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A Numerical Analyst's Jordan Canonical Form
James Weldon Demmel

ABSTRACT

¥What does it mean to compute an eigendecomposition of an uncertain
matrix? Because of measurement errors and roundoff errors, one rmust typi-
cally compute the eigenvalues and eigenvectors not of a single matrix but
rather of a ball of matrices whose radius depends on the uncertainty in the
data. We approach this problem by asking how to partition the eigenvalues of
the matrices in the ball into nonoverlapping groups which cannot themselves
be further partitioned. More specifically, we define the dissociation of two
subsets g, and 0,=0 \ o, of the set of eigenvalues ¢ of a matrix T as the
smallest perturbation of 7 that will make some eigenvalue from ¢, and some
eigenvalue from ¢ move together and become indistinguishable. If T is the
center of the ball of matrices, and the dissociation of o, and o3 is greater
than the radius of the ball, then o, and o are nonoverlapping groups of
eigenvalues; otherwise the dissociation is less than or equal to the radius and
o, and ¢, are not distinguishable groups. By computing the dissociation for

various 0, and gz, we may compute our desired partition of 5.

The results of this thesis are of two kinds. First, we cornpute upper and
lower bounds on the dissociation which improve bounds in the literature.
Both upper and lower bounds are achievable or nearly so. The upper and
lower bounds are often close together but occasionally far apart. Qur second
set of results quantifies this last statement by assuming a probability density
on the set of matrices and computing the likelihood that the bounds are far
apart. This approach leads to numerous other probabilistic results, such as

the distribution of the condition number of a random matrix, and the distri-




bution of the distance from a random matrix to one with a given Jordan form.
We discuss the relevance of this probabilistic model to finite precision celcu-

lations.
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A Numerical Analyst's Jordan Canonical Form

James Weldon Demmel

Chapter 1: Introduction
Given a complex n by n matrix Ty known only to within a tolerance £>0,
what does it mean to compute an eigendecomposition of T3? By knowing T
only to a tolerance ¢ we mean that 7T is indistinguishable from any matrix in
the set
Ne) = {T:|[To-T|| <¢f . (1.1)
(]l T || denotes some norm of the matrix T; we will specify the norm later.)
We would like to produce an eigendecomposition which is valid in some way
for all matrices in T(¢). and gives as much information as possible about all
matrices in T(¢). This seemingly simple goal leads us along several interest-

ing paths which will now be explored.
First some notation. An eigendecomposition of a matrix T will be writ-

ten

T =585} (1.2)
where © is a block diagonal matrix 8 = diag(®,, . . . ,8,). T's spectrum will

be denoted by ¢(T) or merely g if T is clear from context, and 8;'s spectrum

)
by o; for short. Thus ¢ = (Jo;. If o, contains m eigenvalues (counting multi-
1

plicities) we write #(o)=m.
The following sequence of exarmples will illustrate the difficulties encoun-
tered in computing an eigendecomposition of T(¢) for different values of z.

Consider the following matrix, which is essentially in Jordan canonical form:




1.001

0 100

0
-1

(1.3)

(blanks and 0 both denote zero entries). This decomposition tells us several

things: that T, has 4 distinct eigenvalues at 1.001, 1, 0, and -1, that each

nonzero eigenvalue has a one dimensional invariant subspace (i.e. an eigen-

vector) associated with it, and that associated with 0 is one two dimensional

and one one dimensional invariant subspace.

Does this information remains valid for all matrices in T(¢) as ¢

increases from 0? As soon as £ becomes nonzero, it is no longer true that all

matrices in T{¢) have a triple eigenvalue at O, nor two invariant subspaces

associated with eigenvalues near 0. For example,

1
1.001

has 3 simple eigenvalues at 0, 10Vg, and —10VEe each with its own eigenvec-

tor, and

1.001

0 100
0

¢
0
-1

bas one triple eigenvalue at O with just one three dimensional invariant sub-

space associated with it.

Thus, all matrices in T(¢) (for £ small enough) have three eigenvalues

near to 0 which together have a three dimensional invariant subspace associ-



ated with therm. We cannot, however, identify them individually because they
could all simultaneously equal O (in the case of Tg); their only identities are
as members of a cluster of three.

As ¢ increases to .0005, matrices occur in T(¢) which no longer have two

simple eigenvalues around 1:

1.0005 7q
1.0005

T3= 0

Ty has two eigenvalues at 1.0005 associated with a two dimensional invariant
subspace and for n#0 but arbitrarily small this subspace cannot be split into
two one dimensional subspaces. Thus, when ¢ exceeds .0005 (but not .005),
T(z) has one three dimensional invariant subspace with three eigenvalues
indistinguishable from 0. one two dimensional subspace with two eigenvalues

indistinguishable from 1.0005, and one simple eigenvalue at -1.

In particular, one may draw three disjoint simple closed curves (Jordan
curves) in the complex plane, one around 0, one around 1, and one around -1,
such that any T€T(.0005) will have three eigenvalues clustered strictly inside
the first curve, two inside the second, and one inside the third. Furthermore,
it is impossible to draw any larger number of such curves such that each one
will strictly contain a fixed number of eigenvalues of each 7'€T(.0005). This
last statement is true because within T{.0005) there is a matrix (T'g) with a

double eigenvalue at 1.0005 and a triple eigenvalue at 0.

For values of ¢ exceeding .005. say .01, the clustering of the eigenvalues

changes again. The matrix




1.001
0 100

Ty = 01 O

0

-1
has simple eigenvalues at 1.001 and 0, and double eigenvalues at 1 and -1.

Looking at the eigenvalues as functions of the entry containing .01 (the 3,4
entry), that T, has a pair of eigenvalues at +10n/T, 3, = +1 when T, s, = .01.
Thus, no Jordan curve can be drawn which separates the eigenvalues into dis-
joint regions as was done in the case of T(.0005) or for T(z) with smaller ¢.
This is because the eigenvalues “near 0" can no longer be separated from the
eigenvalues near -1 nor 1, and neither can the eigenvalue at 1.001 be
separated from 1. Thus, one Jordan curve must be drawn containing all the

eigenvalues.

In the case of T(.0005) we could find a matrix (Ts) with a single multiple
eigenvalue within the region bounded by each Jordan curve. It seems natural
to think of all matrices in T{.0005) as being small perturbations of one with a
double eigenvalues at 1.0005, a triple eigenvalue at 0, and a simple eigen-
value at -1 (7). The existence of Ty also provides a simple explanation for
not being able to distinguish the three eigenvalues near 0 or the two near 1.
Is it possible to find a matrix with a sextuple eigenvalue in T(.01)? More gen-

_erally, given a T(¢) and a clustering of eigenvalues which can not be refined

by drawing more separating Jordan curves, is it possible to find T's in T(¢)
which have singie eigenvalues in place of each cluster? The answer is no. We

and independently Wilkinson have produced examples such as [Wilkinson4]



1
2n 1
To'- 3" 1
4n
where for £>n* (n<<1) one Jordan curve around the entire spectrum of T(t)

must be drawn, but where £ must exceed something of order n2>>n* before a
matrix with a single quadruple eigenvalue can be found in T(¢). We call the
eigenproblem for Te') (n*<e'<n?) ill posed, because while no nonempty
proper subset of the eigenvalues is distinguishable (by being separable by a
Jordan curve from the remaining eigenvalues), matrices in T(¢) cannot be
thought of as perturbations of some particular matrix in T(¢) with a single
quadruple eigenvalue. The problem of locating the nearest matrix with just

one eigenvalue is called the "nearest completely defective matrix problem."”

The central problem in this sequence of examples has been how to clus-
ter the eigenvalues into distinguishable groups, how to name the eigenvalues.
There are at least two notions of clustering for eigenvalues. So far we have
sought a collection of Jordan curves {J;} such that the region bounded by
each J; contains the same number of eigenvalues (counting multiplicities) of
each TeT(e). This number of eigenvalues will be called the content of J;.
The easiest way to see how these curves depend on Ty and ¢ is to consider
the set o(T(c)) of all eigenvalues of all TeT(z). 0(T(z)) is an open set and can
be written as the disjoint union of its connected components ¢;(T(¢)). Around
each g,(T(z)) one can draw a Jordan curve J; with o,(I(¢)) strictly inside J;
and all other gy(T(z)) strictly outside. These Jordan curves cluster the eigen-
values of T into regions in a way that also clusters the eigenvalues of each
T€T(z). This notion of naming an eigenvalue by the component of ¢(T(¢)) in
which it lies will be called region clustering.




There is another useful notion of clustering or naming. It will be
described briefly here, with the formal definition left to the next chapter.
Let \; be an eigenvalue of T, and let T(z) be a continuous path starting at
T(0)=T, and remaining in T(¢) for all z>0. Think of A, as a function of z,
varying continuously as a function of z. As long as

M(z)#N(z) forall z  and j#i (*)
A(z) can be unambiguously identified with X. If (*) is true for all paths T(z)
in T(g), then A\; represents a cluster (of content 1) for all matrices in T{z).
This definition makes sense because as long as A\((z) never equals A;(z), it
can be identified by naming it by the A; and the path T(z) whence it came.
If, on the other hand, there is a path T(z) in T(¢) and an zg such that
N(zo)=A;(zg), then we put A\; and A; into the same cluster. In this way, a
unique clustering of ¢ is constructed. This clustering method will be called
path clustering. It will be shown in the next chapter that given T(z), this
path clustering always produces at least as refined a clustering as does

region clustering.

For numerical reasons to be discussed in a moment, one may add

another constraint to the clustering of eigenvalues. Consider

-z 1
z

As long as ¢ in T(¢) is less than &{z)=(V4z%+1-1)/ 2~z? for tiny z, the two

To(z) =

eigenvalues must remain simple. However, as ¢ gets close to g(z), not only do
the two eigenvalues get close, but the similarity transformation S(z) which
exhibits the decomposition in the last equation gets more and more ill-
conditioned. That is, as ¢+2(z), || S(z)|| : || S(z)7!|| +=. The ill-condition of
S(z) is numerically significant because it means computing S(z)AS(z)"! in

floating point arithmetic is apt to lead to large errors (this phenomenon will



be discussed more in Chap. 3). Thus, one may add the constraint to a cluster-
ing that the matrix S which exhibits the decomposition must have a condi-

tion number less than some tolerance &:

S)=||S|]| - IS <= .
At this point the reader might object to example (1.3) on the grounds
that the 2 by 2 block

0
is "obviously” separate from the blocks containing 1, 1.001, and -1, because

lo 100

the off diagonal zeroes are "obviously” sacred. We can quantify this intuition
by using only the condition number of the best conditioned diagonalizing
similarity «(S) which displays the eigendecomposition as in (1.2): if #(S)<&,
then the decomposition is acceptable, otherwise it is not. In the case of
{1.3), which is already diagonalized as much as possible, we may take S=/ so
x{S)=1, the smallest possible value of «(S) for any S. This criterion, which
generally allows a finer clusterir,g than the scheme in (1)-(3), can be used to
decompose matrices in preparation for computing functions of them, such as
the exponential. (This type of decomposition will be discussed further in
Chapter 3.)

Let us review the discussion so far by describing a program to compute

the eigendecomposition of an uncertain matrix.

(1) Given T; and ¢, we must cluster the spectrum of the matrix into groups.
As stated above, there are two possible criteria for performing the clus-
tering. Whichever one is chosen, it will turn out that we need only con-
sider clustering o(To)=0,|J0; into two disjoint pieces. Given such a clus-

tering we must be able to compute the largest ¥ such that




KRagion Qlustering: there is a Jordan curve or curves J dividing
the complex plane into two regions such that the groups ¢, and
02 remain on opposite sides of J for all T€T,, or

Path Qlustering: for all paths T(z) in T, A(z)#Ae(z) for all
A (0)€g; and for all x.

This largest £ will be called the (region or path) dissociation betwegen o, and

Og

and denoted by dissg(0,,0; Tpregion) or dissg(0,.0z To.path) (or

dissg(0,.0g) if both the choice between "region” or "path” and T, are clear

from context). The subscript £ indicates that perturbations are measured

using the Euclidean norm. We will also consider dissy(o, . 03), where perturba-

tions will be measured using the 2-norm (these norms are defined in the next

chapter). A better known synonym for dissociation is separation, but separa-

tion has already been used for related quantities [Stewart, Varah] which will

be considered in the next chapter.

(@

@

Given Tp £ and a clustering ¢ = L:')cq. how ill-conditioned must S be if it
exhibits the eigendecomposition
T = Srdiag(®;. ... ,8,)S7!

where T€T(e) and o(8,) is identified with 0,? If it must be too ill-
conditioned, then we need to combine the g from step (1) into larger
groups.

Given a cluster g; which contains more than one distinct eigenvalue and
cannot be split, is there a T€T(¢) all of whose eigenvalues within this
group are equal? If so, this matrix (or at least its existence) should be
reported to the user as output; if such a T€T(z) does not exist, the user
should be told that this part of his problem is ill-posed. This problem is
addressed by Ruhe and KBgstrm [Ruhe2, Kfgstrm1], and we will not

pursue it in this thesis.




Now we describe the contributions of this thesis to the solution of this
problem. We were not, alas, able to solve the problem completely. but we
have made substantial progress and our results are applicable to other prob-

lems as well.

The results are of two kinds. Chapters 2 through 5 analyze the dissocia-
tion and compute both upper and lower bounds for path and region dissocia-
tion. Both upper and lower bounds are attainable or nearly so for various
classes of matrices. The upper and lower bounds are usually close, but can
be very far apart. Chapters 8 through 8 take a probabilistic approach to
analyze how likely the bounds are to be close or far apart, and show, for
example, how to compute the probability that all the matrices in T(¢) will be
completely diagonalizable. Chapter 8 examines the applicability of the proba-
bilistic model to finite precision calculations. More specifically, the results

are as follows.

Chapter 2 further discusses the two notions of clustering (region and

path) described above. In particular we show
diss(s, , 0z . path) = diss(o, , 0, region) ,

and that we can choose a matrix norm that makes the two dissociation meas-
ures unequal. We also define the simple dissociation measures which will be
combined to produce bounds on diss(o, , g3 . region) and diss(a, , 0 . path).
We derive basic properties of these measures, in particular how they behave
under similarity transforms of the matrix, and a "divide and conquer” pro-
perty that makes them easier to compute when the matrix has a block diago-
nal structure. We also present an upper bound on dissy(c, . oz , path) and

dissg(c, , 02 . path) based on one of these measures.
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Chapter 3 solves the problem in step (2) above by computing an Sy
whose condition number is within a factor of VB of best possible (b is the
number of partitions), and by computing explicit upper and lower bounds on
the best possible condition number which differ by at most a factor of b. We
also discuss the possibility of partitioning T subject solely to the criterion
that the condition number of the diagonalizing similarity be less than a
threshold.

Chapter 4 presents a new lower bound on dissy(o, ., 0p , region) which is
sharper than the previously best bound, compares it to other known bounds,
and discusses when it is likely to be sharp. Combined with the upper bound
of chapter 2 this yields the inclusion

upper bound = diss(a, , 0z . path) = diss(a, , 0z, region) = lower bound

Chapter 5 analyzes how far apart the upper bound of chapter 2 and the
lower bound of chapter 4 can be, and presents worst case examples which
show how far apart the bounds must be. We also compute dissg(0, . 0;) and
dissy(0, , 0g) exactly for normal matrices, in which case all four notions of

dissociation (path or region, 2-norm or Euclidean norm) are equal.

Chapter 6 presents a geometric/probabilistic model of the problem, by
defining certain sets in matrix space which are the sets where the eigenprob-
lem becomes difficult. We discuss the algebraic and geometric properties of
these sets, which are algebraic varieties, and put a probability measure on
matrix space which lets us analyze what fraction of matrix space consists of

bard problems.

Chapter 7 uses the model of chapter 8 to compute probability distribu-
tions of the smallest distance
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from a random matrix to one with a given rank (such as the nearest

singular matrix),

from a random matrix to one with a given Jordan form (such as the

nearest matrix with a double eigenvalue), and

from a random polynomial to one with a given zero structure (such as

the nearest polynomial with a double zero).

Chapter B uses the model developed in chapter 8 and the results of
chapter 7 to analyze when the bounds discussed in chapters 2 through 5 are
likely to be accurate. We show, for example, that the ratio of the upper to
lower bounds on dissz(0, , 05) cannot exceed K>1 except on a set of matrices
of probability proportional to X2

Chapter 9 investigates the usefulness of the probabilistic model of
chapters 8 and 7 for analyzing the performance (speed and accuracy) of
algorithms for matrix inversion, eigendecompositions, and polynomial root
finding. A paradigm for analyzing performance is presented, which, when
applied to matrix inversion, yields a lower bound on the probability distribu-
tion of the relative error in Gaussian elimination. The model, because it
ignores the effects of finite precision arithmetic, fails to provide any useful
information at all about certain algorithms whose performance depends
strongly on the effects of finite precision arithmetic. We show how extending
the model to take finite precision arithmetic into account could be used to
measure how many problems can be solved as a function of the amount of

extra precision carried in intermediate computations.




12

Chapter 2 Preliminary Definitions and Lemmas
2.1 Introduction

In this chapter we introduce the notation and dissociation measures
used in the rest of the thesis. These dissociation measures will be used later
in the thesis to construct upper and lower bounds on diss(o,, 0z). These
upper and lower bounds can be far apart; just how far apart is the subject of
chapters 5 and 8. However, it is unlikely that they are very far apart;
chapters 8 and 7 will present a natural model for "picking a matrix at ran-
dom"” which we will use in chapter 8 to make this assertion precise and prove
it.

The rest of this chapter is organized as follows. Section 2.2 discusses
diss(o, , 0g . Tegion) and diss(o, , 02, path). diss(o, , 02 . path) must always be
at least as large as diss(o, , 03, region) although they may indeed differ in
certain circumstances. We also show that they provide enough information to
cluster the eigenvalues in the way discussed in chapter 1. Section 2.3
discusses the canonical forn we use for matrices. Sections 2.4 and 2.5 define
the dissociation measures || P|| (P a projector), sep(4.B). and sep,(4.8)
and discuss their basic properties. In particular, sep(A4.8), sep,(4,8) and
|| P|]| share certain scaling and “divide and conquer” properties which we
later exploit to compute relationships among them.

2.2 The Difference between diss(o, , 0z , region) and diss(o, , 02, path)

This section discusse the difference between diss(o, , 0p . region) and
diss(o, , 0z, path), proves that diss(c, , 0z . path) = diss(o; , 03, region), and
shows why they provide sufficient information to compute the decomposition

of chapter 1.
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Let us restate the definition of diss(g,. ;. region). The definition
depends, of course, on the matrix norm |[|{-{]| which defines the shape of
T(z) = {T: ||| T-Tol|| <£}. Consider the set o(T(e)) of all eigenvalues of all
matrices T in T(¢). o(T(z)) is an open set and can be written as the disjoint
union of its connected components. g, and gz, being sets of eigenvalues of Ty,
must lie in these connected components. Let 0,(T(z)) be the union of those
components containing points of ¢, and gz(T(¢)) be the union of the com-
ponents containing gz. If 0,(T(¢)) and 0x(T(¢)) are disjoint, then we can draw a
Jordan curve J(¢) having 0,(T(c)) strictly inside and o,(T(¢)) strictly outside.
As we increase £, 0,(T(z)) and o0y(T(z)) will grow from tiny neighborhoods
around the eigenvalues when £ is near 0 and eventually intersect for ¢
greater than some &, at which point the curve J(¢) no longer exists. This &,
the supremum of the set of £ for which separating curves J(&) do exist, is the

definition of diss(a, , g3 , Tegion) (note the implicit dependence on the norm

1)

Now we define diss(o, , 0z . path). Let T(z) be a continuous path starting
at T(0)=T, and remaining inside T(e) for all z20. Let Ag=[A;. . ... An] be
some ordering of Ty's eigenvalues, possibly with repeated entries for multiple
eigenvalues. We wish to define A(z)=[A(z), . . . . Ag(z)] so that A(z) is a list of
the eigenvalues of T(x) and a continuous function of z. This is possible since
the eigenvalues are continuous functions of the matrix. The only ambiguity
arises when some some T(zy) has a multiple eigenvalue \,(zg)=Ae(z) (say).
In this case one may arbitrarily choose which eigenvalue to call A,(z) and
which to call Ag(z ) for z>z4 (this arbitrariness will not affect the definition of
dissociation). Suppose. that A,(z,)=)Xs(z;) for some path T(z) and possibly
distinct z, and z;. In the language of the last paragraph, this means that the

connected components of ¢(T(¢)) containing A, and Ag must coincide, since
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both contain the point A,(z,)=A¢(z2). Said another way, if A,€0, and A,€0,,
then diss(o, , 03 , region)<e, because A, and Ay belong to the same region
cluster of T¢). For path clustering we make a more stringent requirement
on A(x). that A;(Zo)=Ag(z) for a particular value of z, and some path T(z).
In other words, A,(z) and Ag(z) must be able to achieve the same value simul-
taneously. Now let ¥ be the supremum of the set of £ such that for all paths
T(z) in T(¢), A(z) never equals A(z) for any A,(0)=A,c0, and any
A2(0)=Az€0;. This T is the definition of diss(o;. oz, path) (note the implicit
dependence on the norm ||| - ]|} ).

Why have we ©bothered to draw this distinction between
diss(o, . 0z, region) and diss(o, , 05 . path)? The example in the next para-
graph demonstrates that the two notions of dissociation can indeed differ,
provided we are allowed to choose a matrix norm ||| -||| other than ||-|| and
[l 1| g. We do not know if diss(o, , 0, , region) and diss(o, , 0, , path) can differ
if [I| -]l is one of || -|] or || || g: this is an interesting open question.

For our example, we choose

10
To=lp -1

and a norm ||} ||| whose unit ball is a very narrow ellipsoid pointing in the

F

direction. For example, we may take

T2 = B(Tial® + | Tas® + | Tu=Taal?) + 37114 Tel?
where B> 1. The idea is that the unit ball in the ||| ||| norm contains only

matrices close to a multiple of the identity, so that points in T{z) look like
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10 !

-1
plus an ¢ or smaller multiple of the identity. For ¢ near 1, we get essentially a
pencil of matrices with eigenvalues {1+z , —1+z{, || < 1. Thus, the region
corresponding to A;=1 is a small neighborhood of the disk of radius 1 cen-
tered at 1, and the region corresponding to A;=-1 is a neighborhood of the
disk of radius one centered at -1. These regions overlap at the origin and so
diss(o, , 0y , region)<1. However, A, and A; can not be made equal by pertur-

bations of this size; indeed A;—A; remains close to 2 until ¢ gets close to B.

Therefore diss(o, , 02, path) can be arbitrarily larger than

diss(g, , 05 , region) if we are allowed to choose ||| ||| other than ||-|| and
IRIF2
It is true for any norm ||| ‘|||, however, that

diss(o, , 02 . path) = diss(o, , 02, Tegion) ,
simply because if two distinct eigenvalues can be made equal by a perturba-

tion of size diss(s, . 0z, path), then no Jordan curve can be drawn separating

the regions of the plane in which they lie.

It remains to show why being able to compute diss(g, . 0;, path) (or
diss(g, , 02, region)) is sufficient to cluster the spectrum completely. By
clustering the spectrum completely, we mean finding a partition
L ={0,....,0,} or Ty's spectrum such that
Region Clustering:

L is the finest partition for which we can find Jordan curves J; surround-

ing disjoint regions of the complex plane containing ¢ (T(z)) (o(T(¢)) is

the component of o(T(z)) containing oy).
Path Clustering:
¥ is the finest partitioning for which no two distinct eigenvalues A;€0;
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and A;€0; can be continuously transformed to a common value A along

some path T{z) in T(&).
L is well defined (in both cases) because of the following property: if £, and
L, are any two partitions satisfying the stated criterion (for paths or
regions), then the partition £, NI, (the coarsest common refinement) also
satisfies the criterion. Thus, £ may be uniquely defined as the intersection of
all partitions satisfying the criterion. (The set of all partitions satisfying the
criterion is never empty, since it always contains the trivial partition £={a}.)
Now note that diss(g,. 0, ., region) (or diss(o,, o, . path)) is sufficient to

determine if Z={0, . 07} satisfies the criterion.
2.3 Schur Canonical Form
Throughout this thesis we will ask questions of the form:
"What matrix T possessing property P minimizes || T—T,} 2"

where property P depends only on the Jordan canonical forms of Tgand T. It
will be useful to know what transformations we may perform on Ty that

either do not change this minimumn distance, or change it in an easily meas-

ureable way. We will use two distance measures, the 2-norm || || and the
Euclidean (or Frobenius) norm || -]| g, which we now define.
Let

=il = (3 1= Ve
denote the Euclidean length of the n-vector z. Then || T|| is deflned as

— i 11
ITI = 5%z
|| T|| # is defined as

T =(TITyIBV2 .
3
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Another definition of || -|| z we will need later is the following:

T g = (e(TT*)YV2 . (2.1)
This expresses || -||  as the norm induced by the inner product
<A.B> = tr(AB®) (2.2)

These norms have the following well known properties [Wilkinson2):

Al =1lAllg s Vn |l All
l1AB|| = || A]} || B

1481l 5= 1All 11 Bll 5 (23)
|AB|lgs ||Allg || Bl]
These last inequalities immediately imply
dissg(o, ., 02) < dissg(o, , 02) < Vn dissy(0,, 03) . (2.4)

We also define the condition number of the nonsingular matrix S as
k(5) = || Sl 1| s7]
We may now ask how much our answer to our minimum distance ques-

tion changes when we change Ty to STS™:
Lemma 2.1: Let ||| ||| denote either ||-|| or ||-lig. If §=inf ||| T-Tojl.

where the infimum is over matrices T possessing property P, then if S is

nonsingular 65 = ix}f | T=SToS™1||| satisfles

—(ng <bs<6 K(S) . (2.5)
Proof: Since property P depends only on the Jordan canonical form, 7' has

property P if and only if ST'S ™! does as well. From (2.3) we see

I T;(-ST)'oIH < ||| ST'S1=~STeS™Y|| < ||| T'~To!l| -x(S)

whence follows (2.5). Q.E.D.

In other words, transforming Ty to ST¢S~! can only change the
minimum distance by a factor of at most x(S). We will exploit this property
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systematically throughout this thesis.

In particular, if ¥(S)=1, the distance cannot change at all. It is well
known that x(S)=1 if and only if S is a scalar multiple of a unitary matrix.
Schur's lemma, which we quote below, tells us that unitary transformations

are enough to put any matrix into upper triangular form:

Lemma 2.2 (Schur’s Lemma): Given any n by n complex matrix T thereis a
unitary matrix @ such that Q7@ '=U is upper triangular. Furthermore, Q
may be chosen so that the eigenvalues appear on the diagonal of U in any

prescribed order.
Proof: See [Isaacson).

These two lemmas tell us that we may assume without loss of generality

that our original matrix Ty is of the form

n:kﬂ, (2.8)

where 0(A)=0, and o(B)=0, We will occasionally have need of a related uni-
tary canonical form where 4 is upper triangular but B is lower triangular.
This form is obtained from (2.6) by reversing the order of the last dim(Z8)

rows and columns of T,
2.4 sep(A,F) and Projections

Projections and their norms have been used throughout the literature as
measures of the sensitivity of an eigenvalue to perturbations [Schwarz,
Kato2, Kahan1, Ruhel, Wilkinson2, Wilkinson3], so it should be no surprise

that we use them here, too.

There are several equivalent ways to define the projection P associated

with ;. We will use the following two:
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As described in the last section, we assume T is in the form (2.8), where
0(4)=0,, o{B)=03, and o0z = ¢. We also assume JZ is lower triangular. Let
| n,=dim(4) and ng=dim(Z). Now consider the system of linear equations

AR -RB =C (2.7)
which we want to solve for R. It is easy to verify that if we renumber the

entries of the n, by np matrices # and C so that the first column is num-

bered 1 to n, from top to bottomn, the second column from n,+1 to 2n,, and
so on, then equation (2.7) can be rewritten as [Varah]

(A®/ - I®BT)R' = ¥, 5R' = C' . (2.8)
® denotes the Kronecker product, and R' and C' are the reordered versions
of R and C (they are n, np dimensional column vectors). The matrix ¥4 g is
a square n, ng dimensional upper triangular matrix with diagonal entries

X(4)=A;(B). In other words, 4 and B have a common eigenvalue if and only

if ¥, p is singular, a case we rule out by insisting 0,0z = ¢. For example, if
B={B}is 3 by 3, then
~Buwl ~Bal ~-Bal)

Y4B = A-Bx' ] ~Bspl| . (2.9)
A-Bgy

Thus, we may solve (2.7) for R given any C. Now observe that

P= [; N (2.10)

s0 that P is a projection. Since

PT=TP= ['; A:] (2.11)

P projects onto the invariant subspace belonging to o0;. Note that
HPHE=1+ | R||2=|I-P||%
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Now deflne S as

-R
s-.-[’ 1]:[31132] \ (2.12)
where S, consists of the first n, columns of S {[/|0]T) and S; consists of the

remaining ng columns ([-RT|7]7). Then it is easy to verify that

S1TeS ={A BJ . (2.13)
In fact, any S* which diagonalizes T as in (2.13):

5'71TeS = {A B.] (2.14)
with o(A')=0, and o(B')=0; is easily shown to be of the form
1
S'= S.F Dz] (2.15)

where D; and D, are conforming nonsingular matrices. Conversely, any S’ of

the form (2.15) satisfles (2.14).

Given S as in (2.12), we express its inverse as

(s-1ym]

Sl= (S-l)(z) (2.18)

where (S-1)%) contains as many rows as S; contains columns. Then P may be

written

P=5S, (sHiv; (2.17)
This is equivalent to (2.10).

These facts will be important in chapter 3, where we exhibit D, and D,
which minimize the condition number of S".

A scaling property of || P|| analogous to the scaling property in lemma
2.1 follows from this last expression for P:

Lemma 2.3: If P is the projector of Ty corresponding to ¢,, and P' is the pro-
jector of UToU™! also corresponding to gy, then
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Pl
U)
Proof: If P=5,(S~1)\), then P'=US,((S~1)MU-) = UPU". The result follows

WPl s=(U) I Pi . (2.18)

by taking norms. Q.E.D.

Now that we have deflned the projection P, we turn our attention to

sep(A.B). Following Stewart[Stewart], we define

Definition 2.4 The separation of two matrices A and B is denoted sep(4,B)

and equals
_ .. ||[AR - RB|| g
sep(4.8) = }!r'x.g TR s (2.19.a)
= ([ ¥ghl)? (2.19.b)
= the smallest singular value of ¥, g (2.19.c)
= the distance (measured either with || -]} or |} -|| g) (2.19.9)

from ¥, p to the nearest singular matrix .
If A and B are clear from context, we will abbreviate sep{A4.B5) by sep.
sep(A,B) has several important properties which we now enumerate.

First of all sep(4,8)=sep(B.4); this is because ¥, 5 can be obtained from

—¥p 4 by simply reordering the rows and columns. More importantly we have

Lemma 2.5: sep(A4.B). || P|| and || C|| g satisfy the following inequalities:

PlE<1+ ”:;'f <1+ ”i‘;}'? (2.20)
NPy <1+ BCILE o, [ Tolle (2.21)
sep sep

Proof: From (2.8) follows || R||g<|| C|| g/ sep. Since ||P||2=1+ || R
(2.20) follows. (2.21) is simply a coarsening of (2.20). Q.E.D.
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Thus, sep(4.B) (with || T,l| z) provides an upper bound on the norm of
the projection associated with either 4 or B, and conversely, || P|| provides

a lower bound for sep(4.5).

The next property shows that sep satisfies a property analogous to
Lemma 2.1. We could hardly expect to be able to use sep to help measure dis-
tances (and dissociation) if it did not behave the same way under transfor-

mations as do distances.
Lemma 2.6 ([Stewart]):

sep(A.B
x(S4)-x(S3)

Proof:

< sep(SyAS;.SpBS5') = sep(4.B) k(S,) x(Sp) . (2.22)

|| S4AS; 'R — RSgBS5'!| g

sep(S,AS: .S BS5") = }'rlg

R g
= ing ! Sa(A(Si'RSp) - (Si'RS5)B)S§'ll g
Rwo | R|lg
it q | A(SSIRSE) = (S7'RSB)B
-1y a1t ing \LA(Si'RSp) - (Si'RSp)B|i
s || Sell -1l st -1 Sell -1l St llir:fo || SRSy &

= &(S4) (Sp)-sep(4.B) .
This proves the second inequality of (2.22). The first inequality follows by
symmetry. Q.E.D.
The next lemmma shows that we may apply the "divide and conquer” para-
digm to computing sep(4,5) when either A or B is block diagonal. We write
A= ?A‘ when A is block diagonal with blocks 4.

Lemma 2.7 [Stewart]:
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sep(@4 .?B,-) = min sep(4,.5;) (2.23)
Proof: It suffices to show sep(A.B®5z) = m‘in sep(4.8;). From (2.9) we see
that if B is block diagonal, so is ¥, p with diagonal blocks ¥4 g. Since the
singular values of any block diagonal matrix are the singular values of the

blocks, the results follows directly from (2.19.c) in Definition 2.4. Q.E.D.

Lemmas 2.8 and 2.7 together tell us that if A and B can both be com-
pletely diagonalized by not too ill-conditioned similarities S, and Sp (that is,
neither «(S,;) nor x(Sp) is very large), then sep(4,B) differs from
nil‘i,nl)\.-(A) = A(B)! by the not too large factor x(S,)-x(Sp). The expression

rr‘%nl)\,,-(A) - X;(B)!, the smallest difference between an eigenvalue of A and

an eigenvalue of B, is the coarsest possible measure of the dissociation
between o(A) and o(B). We record this fact as
Lemma 2.8: If S;'AS,=diag(\(4)) and S5'BSp=diag(A;(B)), then

rr:,in Ia(4) = 2(B)]
x(Sa) - x(Sp)
Proof: Combine Lemmas 2.0, 2.7 to obtain the lower bound, and Definition 2..d

min [A(4) = A;(B)| = sep(4.5) =

to obtain the upper bound. Q.E.D.

We will show in chapter 8 that the likely situation is that 4 and B are
diagonalizable with reasonably well conditioned similarities so that

u‘x.i’nlh(A)-A,(E)l is a reasonably accurate estimate of sep(4.B) and

disse(o,; . 02).

We present one more application of the divide and conquer paradigm
used in Lemma 2.8: if A and B are block diagonal, the computation of R
where AR — RB = C can also be broken into smaller parts. We illustrate when
both 4 and B have two diagonal blocks. The system of equations




R - RE _[A Ru R [ n Ryl [B) Cu Cue

Tl A |Ra Rzz] R, Ra Bz] Car Coo| -
(where all blocks are of conforming sizes) breaks into four independent sys-
tems:

If A or B has more than two blocks, equation (2.24) still applies.

2.5sepp(A.B)

Another measure of the separation of two matrices is sep,(A,B). the
smallest perturbation to 4 and B which causes them to have a common
eigenvalue. sep,(A4.8) will be our upper bound on the dissociation between g,
and gz and chapters 5 and 8 of this thesis will analyze how much sep and

sep, may differ.
Modifying a definition of Varah [Varah] slightly, we define
Definition 2.9:
sepa(4.B) = inf max(|| (A-A)| -1 || (B-A))1]| <) (2.25.0)

= inf max(ogn(A~N) . Orun(B -AT)) (2.25.b)

where Onin denotes the smallest singular value.
Varah defines sep, as the sum of the two singular values rather than the
maximum, so his sep, cannot differ from ours by more than a factor of 2. We
have modified his definition because it lets us state slightly sharper results

later on.

sepx(A.B) is clearly an upper bound on dissg(a, . 0z, path). Of course,
there might be a general perturbation of Ty (not just one in A and B) of
much smaller norm than sep,(4.8) that makes an eigenvalue of A coalesce
with one of B, so in general sep,(4,5) only provides an upper bound on

dissg(o, , 02 . path). Since chapter 8 contains the rather surprising result




25

that sep, provides a not too pessimistic overestimate of this dissociation, we

record this fact in the following theorem.

Theorem 2.10:

sep,(A.B) = dissg(0, , 0z , path)
V2 sep,(A.B) = dissg(o, . 0o, path)

The rest of this section proves several properties of sep, that we will
need later. In particular, we will prove two lemmas analogous to lemmas 2.6
and 2.7. Since we are going to relate sep, and sep, it is important that they
behave similarly under transformations (lemmas 2.6 and 2.11) and divide and

conquer (lemmas 2.7 and 2.12).

First, however, we present a characterization of sep, analogous to
Definition 2.4 of sep. The following lemma is essentially due to Varah [Varah]:

Lemma 2.11:

| AR - RB|| g
<2 AB
“ R” z ’epk( ) (2.28)

sep)(4.B)< inf
R)=)

Proof: The infimum in definition 2.9 of sep, is clearly attained for somne A by

compactness. Thus, there exist unit vectors u and v such that

sepp(4,8) = max (Omm(A—A)  Ommn(B-A))
= max (|| Au=ru|| . |[[v*B-veAl]) .
Let R=uv*. Note that rank(R)=1and || R|| = || R|| g = 1. Thus
|AR - RB||x = || (A-NR - R(B-N)|| ¢
= || (Au=-hu)v® —u(v*B-vA)ll 5
< || (Au-rultlip + |l u(@wB-v Al

< 2 sep\(A.5 ) .
This proves the second inequality in (2.28).
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To prove the other inequality, we again write R as uv®, where u and v
are unit vectors and uv® attains the infimum in (2.28) (this is again possibie
by compactness). Then as before

| AR-RB|| g=|| (A2 -du)v* —u(v*B—v*)N)|ig .
We now exploit the alternative definition of || - || # given in (2.1) above:
|| AR-RB|| § = tr{[(Au-2u)v® - u(veB—v*A)][(4u-Au)v* — u(v*B—v*A)]*}
= tr[(4' - B} (A’ - B)*]
=tr(A'A'*) + 2Re tr(A'B'*) + tr{B'B'*)
=||A'||g +2Retr(4'B'*) + || B'|| § .
Now if we choose A = v*Bv (or u®4u), A’ and B’ are orthogonal:
tr(A'B'*) = tr(u(v*B-v* A\)v (Au -\u)*)
= tr(u(v*Bu -\)(Au-Au)*)
=0.
Thus with this choice of A
|AR-RB|| B = || (Au=Auv®|| } + || u(v*B—v*A)!!
= max (|| (A-Null g 1|v*(B-N]|g)?

> - sepf(4,B)
as desired. Q.E.D.

An immediate consequence of the definition of sep(4.8) and this last

lemma is

lamma 2.12:

sep(A.B) < 2 sep,(A.B)
If dim(4)=1, then

sep)(A.B) < sep(A.B) = 0y (B~a,, - I) < 2 sep,(A.B)
where A=[a;;]. An analogous inequality holds if dim(B2)=1.
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Prool: The flrst inequality follows from lemma 2.11 and the first line of
Definition 2.4 of sep. The second inequality holds because if dim{4)=1 then
the R in Deflnition 2.4 is either a row vector or column vector, and so neces-

sarily of rank one. Q.E.D.

Just how much smaller sep can be than sep, is the subject of chapters 5

and 8.

The next lemma shows that sep, behaves similarly to sep under transfor-

mations.

Lemma 2.13: Let & = max (x(S,) . x(Sp)). Then

’epk(;-B_) < sepA\(S,AS;!, SpBSg!) < sep\(4.B) & . (2.27)

Proof: For any A

LA A=)
) (228)

< || {54455 = N7

< || (A-N)71] 1a(Sy) < 1] (A-N)1) 1E
An analogous inequality holds for B and Sy. The lemma follows directly from

these inequalities. Q.E.D.

There is an important difference between lemmas 2.8 and 2.13: while
sep, may change by & after a transformation, sep may change by as much as
#%. Although we do not exploit this difference further, it boisters our conjec-
ture of chapter 8 that sep/ || To|| £ is almost always bounded beiow by a con-
stant times (sepy/ || Tol{ x)*.

The next lemma shows that the same divide and conguer formula holds

for sep, with block diagonal A and B as for sep.




Lemma 2.14:

sep,\(?A.- ' ?Bj) = rrg.n sepA(A . By) (2.29)
Proof: The singular values of a block diagonal matrix are the singular values
of the blocks. Thus

sep\(?A‘ ' ?Bj) = 'lilf max(am(?(.& =-A) . Um(?(gj =A))
= U;!f max(m‘m Omm(A—A) m}in Omin(Bj=A))
= n%n U,}f max(0mip (A ~A) . Omn(B;—A))

= min sepy(4 . B;)

as desired. Q.E.D.
In analogy to Lemma 2.8 we have
Lemma 2.15: If S 'AS,=diag(\M(A)) and S5'BSp=diag(\(B)). then

min IA(4) = 2;(B)] min [A(4) - A;(8)]
2 e I CAN TN
Proof: The upper bound follows from the definition of sep, and the lower

bound from the last two lemmas. Q.E.D.




Chapter 3: Best Conditioned Diagonalizing Similarities
3.1 Introduction

In this chapter we assume a partitioning £={g,, . . . ,0,} of ¢ has been
chosen, and ask the following question: what is the best conditioned S such
that '

S-ITS = diag(®,, . . ., 8,) (3.1)
and 0(®;)=0;? We need to use the answer as a tool in later chapters.

Actually, it is as easy to answer a more general question: how ill-
conditioned must a matrix S be if its columns are constrained to span cer-
tain subspaces? We answer this question in order to find nearly best condi-
tioned matrices Sgp and S; that block diagonalize a given matrix pencil
T = A+)AB, i.e. S[ 1Sy = 8 is block diagonal. We show that the best condi-
tioned Sp has a condition number approximately equal to the cosecant of the
smallest angle between right subspaces belonging to different diagonal
blocks of @. Thus, the more nearly the right subspaces overlap the more ill-

conditioned Sp must be. The same is true of S; and the left subspaces.

For our original problem T = A~\/, the standard eigenproblem, S; = Sp
and the cosecant of the angle between subspaces turns out to be the norm
|| P}| of the projection associated with each subspace. More precisely, if F; is

the projection associated with o;, then

max || B|| < &(Soprue) < b - max || || (3.2)
where b is the number of blocks in (3.1). Furthermore, we can construct an
S, denoted Sgemyp. Whose condition number x(Sgeryp) lies in the bounds
given by (3.2): choose the rank(FP;) columns of Sgeryo which span the invari-
ant subspace belonging to ¢; to be orthonormal.
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In particular, if =2 so that we are dividing T into just two blocks, then

we can compute an S (not Sgrryo) such that

e(Sapruar) = K(S) = || Pl| + V[P =1

T

We will need this construction for our lower bound on dissy(0, , 03) in the next

and

chapter.

The rest of this chapter is organized as follows. Section 3.2 defines the
notions of invariant subspaces and angles between them more precisely,
reviews some of the history of the problem, and summarizes the results of
the chapter. Section 3.3 shows how to decompose T into b=2 diagonal
blocks, and section 3.4 handles the case of 423 blocks. Section 3.5 contains
the proof of a technical result needed in the proof of Theorem 3.1. Section
3.8 applies the main results to an error bound for computing a function of a
matrix, such as exp(T). Section 3.7 discusses the possibility of partitioning o
using only projection norms as a criterion. Finally, section 3.8 presents some

applications of the main results unrelated to eigenproblems.

Most of this chapter has been published already [Demmel], except for
sections 3.7, 3.8 and part of 3.4.

3.2 Definitions and Summary of Results

Two measures of the ill-conditioning of the eigenvalues of a matrix have
appeared frequently in the literature. One is the condition number of a
matrix S which (block) diagonalizes 7 under similarity { i.e. S™!TS is block
diagonal), and the other is the norm of the projection matrix P; belonging to
the spectrum of the i-th diagonal block of S~!TS (if the i-th block is 1 by 1,
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the norm of P, is usually denoted 1/ |s;| [Wilkinson2]). Many authors have
shown that the larger the condition number of S, or the larger the norm of
P,;, the more sensitive to perturbations are at least some of the eigenvalues
of 7. Bauer and Fike [Bauer1), Kato [Kato2], Kahan [Kahan1], Ruhe [Ruhe1],
Wilkinson [Wilkinson2, Wilkinson3)] and others have all contributed theorems
stating this result in different ways. Recently Sun [Sun] has extended many

of these results to regular matrix pencils.

Our goal in this paper is to show that these two measures of ill-
conditioning are nearly equivalent. We state our result in terms of angles
between subspaces because this makes sense for penciis T7=A+AFH as well as
the standard eigenproblem T=A-Al: the condition number of the best §
which displays the block structure is within a small constant factor of the
cosecant of the smallest angle between a subspace belonging to one diagonal
block and the subspace spanned by all the other subspaces together. In the
case of the standard eigenproblem this cosecant turns out equal to the larg-

est of the norms of the projections 5.

We exhibit a best S for decomposing T into two blocks and compute its
condition number exactly in terms of the norm of a projection (see part 2
below). This result was obtained independently by Bart et. al. [Bart] and
improves an earlier est..nate of Kahan [Kahan1]. Wilkinson {Wilkinson2, p 89]
and Bauer [Bauer4] relate the two measures when S~!TS is completely diag-
onal; we generalize their results to diagonal blocks of arbitrary sizes in

theorems 3.3 and 3.3a below.

The angle between subspaces is defined as the smallest possible angle

between a vector u in one subspace S! and a vector v in another subspace

&
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¥(S' . ) = min f{arccos |u*v| whenueS ,ve®, |jull =|jv] =1}3.3)
(9 will be discussed more fully later).
I S ....9 is a collection of subspaces, the space spanned by their

union is denoted span{S!, . . . ,S*}.

With this preparation, let us consider the subspaces associated with the
block diagonal matrix S; TSy = @ = diag(@,, . . . ,8,), where 8 is r; by ¢; 7,
and ¢; must be equal unless T = A+AB is a singular pencil [Gantmacher].
From S 'TSp=© follows TSp = S;® which implies that T maps the space S}
spanned by the first ¢, columns of Sp into a space S} spanned by the first r,
columns of S;. Similarly, columns c,+ - - - 45+l toc,+ - - +c; of Sp span
a space S} that T maps into a space S} spanned by columns 7,+ - - - +7,_;+1
tor,+ -+, of S;. Stewart [Stewart] calls the pairs Sk . S} deflating pairs
since they deflate T to block diagonal form. For the standard eigenproblem

=A-\ we have S} = S} [Gantmacher] in which case they are denoted by &
and called invariant subspaces and then no generality is lost by assuming
Sg = S;. Henceforth we drop the subscripts R and L of S since they are
unnecessary for the standard eigenvalue problem and since our results

apply to each case separately for the general problem 7 = A+AB5.

Our problem is to choose the columns of S to minimize x(S) subject to
the condition that the columnns span the subspaces $'. (It is not important
for the proofs of our results that the & be defined by an eigenvalue problem;
we ask only that the S' be linearly independent and together span all of
euclidean space. Thus our results may be interpreted as results on one-sided
block diagonal scaling of matrices.) Our first result will be that by choosing
the columns spanning each subspace to be orthonormal, we will have an S
whose condition number is within a factor V8 of optimal, where b is the
number of diagonal blocks of ©:
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(Sormro) s VB &{Sopruar) - (3.4)
Sartro denotes any matrix S whose columns are orthonormal in groups as

described above, and Sgpryy denotes any matrix S whose condition number
is as small as possible. This extends a result of Van der Sluis [vanderSluis]
where all subspaces ' are one-dimensional. Van Dooren and Dewilde [Van-
Dooren] have also shown the choice of Sgpryp is nearly best, and in fact

optimal if the subspaces S are orthogonal.

Furthermore, we shall bound x(SgrTyp) above and below in terms of the
angles between the subspaces § spanned by its columns. Let ¥ denote the
smallest angle between & and the subspace spanned by all the other sub-

spaces together:

% = 9(S, s?g‘.n!!’l) : (3.5)
We shall show
max (ese ¥ + Viese? 9, - 1) < x(Sopmua) (3.8)
< K(Smyo) < Vb icscz 9
{=]

When b =2 (i.e. we have only 2 diagonal blocks) Saeryo is in fact optimal,
and

&(Sortro) = *(Sgprmaar) = c2c ¥ + VescfE9 - 1= cot /2 . (3.7)
Sgprrua 18 not unique, and we compute another S for the § =2 case which has

the optimal condition number and which further satisfles

gt :

in the case of the standard eigenproblem where 8! is the invariant subspace

belong to A, and S the invariant subspace for B.

For the standard eigenproblem we also have csc ¥ = || P,||, where P, is

the projection associated with subspace i. It follows from (3.8) that the two
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measures of ill-conditioning &(Sgpmyy) and m‘nxll P;|| we wanted to show

nearly equivalent can differ by no more than a constant factor:

max || || < e Sepmua) < b - max || Al . (3.8)
3.3 How to Decompose T into 2 blocks

In this section we show that the best conditioned S whose first ¢
columns span a given subspace S' and whose remaining n—c columns span
another given complementary subspace S has condition number

(Sapriua) = csc ¥ + Vesce 9 - 1 =cot 9/2 (3.9)
where ¥ = 3(S!, ). Note that we assume S' and & are linearly independent,
for otherwise S would be singular.

To prove (3.9) we will need a technical result, Theorem 3.1, that bounds
the norms of submatrices of a positive definite matrix in terms of its condi-
tion number. Theorem 3.1 is a slight generalization of an inequality of
Wielandt [Bauer2] and the proof technique used here yields several other ine-
qualities (Theorem 3.4) one of which (3.55) is an inequality of Bauer [Bauer3).

b3

be a Hermitian positive definite matrix, partitioned sothat 4 isn by n, B is

Let

nbym,and Cism bym. Let x = || H|| || H~'|| be the condition number of
H. let X~1/2 denote any matrix such that X~ V2(x~1/2)s = x-1,

Theorem 3.1: If / and x are defined as above, then

| (a-vyeBcv2)| < 21 (3.10)

or, equivalently,
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1+ || (a"v2)eBC1/2)|
1- (| (A 7)BC 77| (@1
Furthermore, this bound is sharp. In fact, given any n by m matrix Z such

c2

that || Z|| < 1, both sides of inequality (3.10) are equal for the matrix

| 4
H - z. [ .
This theorem will be proved in Part 3.5.

We also need another definition of the (smallest) angle ¥ between sub-
spaces that is more useful than the one stated in the introduction. As stated
there, ¥ is the smallest possible angle between a vector in one subspace and
a vector in the other subspace (the largest possible angle may be much
larger than the smallest if the subspaces are not one dimensional). If S, is an
n by ¢ matrix of orthonormal columns which form a basis of S! and S; is an
n by n—c orthonormal basis of the second space $, then ¥ may also be

expressed as [Davis]
9(S'. ) = arccos || S*;S;|| = arccos sup |y®S*Saz | (3.12)

= inf arccos |u*v |
“ v
where the sup is over arbitrary unit vectors z and y, and where the inf is

over unit vectorsu in 8' and v in &.

Now consider a2 candidate matrix S:

Sarrao =[S | Sel (3.13)
where S; and S; are orthonormal bases of S' and S respectively. We may
describe every other possible S whose columns span S' and & in terms of
SarrHo:

Sp = Somrno D = Sarrho diag(D, . D) = [S1D, | SeDe) . (3.14)
where D, is a nonsingular ¢ by ¢ matrix and D; is a nonsingular n -¢ by n-c
matrix. (3.14) states simply that any besis of ' can be expressed as a
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nonsingular linear combination S; D; of the columns of one basis S;. We want

to know which D minimizes c(Sp). We compute

*(Sp) = x(Sp*Sp) (3.15)
D*D, D,*S,%S2D,
= FlDp*S,*S1D,  Dg*Dy

We may now invoke Theorem 3.1 with A™V2 = D!, B = D,*S,*S;D; and

C¥2 = p;! to find

1+ []5,*S.|l

) TS ST

14+cosd

I —cos s (0<¥9<sn/2)

cot? (8/2)

or

x(Spy=cot 8/2 . (3.16)
If D, and D, are unitary, it is easy to verify that we have equality in (3.16),
proving (3.9) with Sppruu, = Sarrro as desired. Note, however, that Sgerua
is far from unique, since there are many orthonormal bases for a given

space.

It remains to show csc 4 = || P|| where P is the projection onto S! paral-
lel to S®. Recall from section (2.1) that if we assume (without loss of general-
ity) that T is of the form (2.4?)

7t =5

then any S which block diagonalizes T is of the form (2.10? and 2.127?)

s=f 70 s

Also, the P which projects onto St parallel to & is (2.8?)
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| A
P=lg of -
where || P||2=1+ || R||2
By choosing
Dy=1 and Dy=(/ + R*R)™V? (3.17)

where D, can be any matrix such that Dp0,* = (/ + R*R)~! we obtain an

p, 1 [ -vz
Rl R(I + R*R)
o i P g

=[S, ] S2]

where S, and S contain orthonormal vectors.

Thus

9 = arccos || 5,*Sz|] (0<8<n/2) (3.18)
= arccos || R(/ + R*R)"V?||
so
csc ¥ = (1 — cos? §)~ V2 (3.19)
=(1 - || R(I + R*R)"V/?||2)~V2
=(1-|{J + RR)"V2R*R(I + R*R)~V¥| )" V2
(since || H||2 = || H*H|| for any matrix H )

= (1 - || R*R{I + R*R)™||)~1/2

=(1- A RRY -1y

1+ [ RR]|
=(1 + || RR||)V?

= V1+]R]?

= | Pl

as desired.
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It is possible to choose D, and D, which are multiples of the identity and
also achieve the minimum condition number. We record this fact here
because we will need it in Chapter 4. Choose

D=1 and Dp,={(1+]||R||}HV2.] . (3.20)
We will show that with this choice of 2, and D; «(S) attains its minimum
value. First pick unitary @, and @, so that @,RQ7 =diag(r;) is diagonal (ie.

the || R|| =r,2 - - - 2r, are the singular values.) Then

oo TP A P

/ diog( 7y
- 17VQ+rE)

has the same condition number as S, and is the direct sum of 2 by 2 blocks

and 1 by 1 blocks. It is a simple matter to compute the largest and smallest

singular values of this new matrix, and to show in particular that

”S”2=”Rl +V“R' + 1
VIIRIF+1

and

I s12=VIIRIIT+ 1 (||RIl + VI[R[[E+1) .
The results follows from multiplying these two expressions to get «(S).

3.4 How to Decompose T into b Blocks when b >2

In this section we first consider partitioned matrices
s=[51] - | &) (3.21)
where each submatrix S; must span a given subspace $ and show that S is
nearly best conditioned when each S;'s columns are orthonormal. Next we
bound the condition number of the best such S above and below in terms of

max csc ;. where
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9 =S, syg‘nisl) : (3.22)
Finally we will discuss a different choice of S (also discussed in the literature
[Smith, Wilkinson2]) which is harder to compute and has slightly different

bounds on its condition number.

Theorem 3.2: Let S be

S=[51 - 15] (3.23)
where S; contains ¢ columns.

If we choose the columns constituting S; to be any orthonormal basis of
the subspace &, then S will have a condition number no larger than Vb
times the smallest possible:

x(S)=< Vb - x(Sopriua) - (3.24)
Said another way, choose S so that S*S has identity matrices (of sizes ¢; by
¢;) as diagonal blocks.

Proof: This proof is a simple generalization of the proof that by diagonally
scaling an n. by n positive deflnite matrix to have unit diagonal, its condition
number is within a factor of n of the lowest condition number achievable by
diagonal scaling [vanderSluis]. We generalize diagonal scaling for unit diago-
nal to be block diagonal scaling for block unit diagonal, i.e. to have identity
matrices (of various sizes) on the diagonal We show that a block diagonal
scaling with b blocks produces a matrix whose condition number is within a

factor b of the lowest possible condition number.

Assume S; forms an orthonormal basis of $* and let D be a block diago-
nal nonsingular matrix whose blocks [ are ¢; by ¢,. Then any S' whose

columns S, span § can be written 5 = SD for some D. Now



ASw)
VB x(SD) = V& et || D w]] > Dz, || VE || S|

v - . 3.25
U5zl 0wl omal® (8.25)
sw0 || D7z |
where z, is chosen so that ||z,|] =1 and || Sz,]| = omm(S) = the smallest
singular value of S, and w, is chosen so ||w,}| =1 and

| D™, || = Omi(D~1). With this choice of w, the factor || D7z, || /|| D7\, ||
is at least one. Since D is block diagonal, w, can be chosen to have nonzero
components corresponding to only one block of D. Thus,
|| Swy |2 = || w, *S*Sw, || = ||w,%w,|| = 1. Since the largest singular value

Omax(S) satisfies
rnaelS) = 1151 = N/ Ellsi11% = \/§7=w .

VB x(SD) = %ﬁ%: “(S) . (3.26)

Since (3.28) is true for any D, it is true in particular when SD = Sgpmu-

Q.E.D.

we get

Van Dooren and Dewilde [VanDooren)] have improved the factor Vb and
shown, in particular, that if the subspaces are themselves orthogonal, then

the above choice of S is in fact optimal.

In the case b =2 we expressed «(Sgpre) in terms of csc ¥, where ¥ was
the smallest angle between S! and S%. We can also bound &(S') here in terms

of the csc 9, where 9 is the angle between S and its complement span}{¥ {:
Fee

Theorem 3.3: Let 7, S and csc 9 be defined as above. Then

max (csc 9 + Vese? 8, - 1) s x(S) = VE - tcsc2 % . (8.27)

i=]
or weakened slightly,
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max csc ¥, <«(S)<bd maxecscd; . (3.28)
1 3

Proof: This proof is based on a similar result of Wilkinson's [Wilkinson2, p. 89]
when all invariant subspaces are one dimensional. First we will prove the

lower bound and then the upper bound.

From (3.18) we know that any S (not just the one defined above) which
has one group of columns spanning § has a condition number bounded from

below:

x(S)=cot ¥,/2 =csc¥; + Vesc2 v, — 1 . (3.29)
Since (3.29) is true for all 7, the lower bound follows easily.

We compute the upper bound as follows:

&(S)= IS 157! = VB || 5] (3.30)

since || S|| < VB (as mentioned in the proof of Theorem 2). ' Using notation

analogous to (2.14) define the matrix P;

P =S5 (sTHW (3.31)
(which would be the matrix projection onto S* for the standard eigenprob-

lem). Since S; consists of orthonormal columns, (3.31) and then (3.19) yield

(S )W = || Al| =cse ¥ (3.32)

-1 1)) 2 = 2 i
s IISN/‘gII(S ol \/‘)_blcsc 5 (3.33)

and the upper bound follows. Q.E.D.

Thus

The lower bound in Theorem 3.3 has been proven by Bauer [Bauer4] in

the case when all invariant subspaces are one-dimensional .

The other choice of S discussed in the literature is scaled so that the i-
th diagonal block of S*S is csc 9, times an identity matrix of size ¢y by c;.
With this choice of S the i-th diagonal block of (S*S)™! has the same norm as




42

the corresponding block of S*S, namely csc ;. Smith [Smith] showed in the
case when all invariant subspaces are one-dimensional that this choice of S
is optimally scaled with respect to the condition number defined with the
Euclidean norm:

cg(S)=1lSlieliSsis -
More generally, with this choice of S, Theorem 2 is weakened slightly to

become:

Theorem 3.2a: With S chosen so that the i-th diagonal block of $*S is csc ¥

times an identity matrix, we have

k(S)<b - e(Saprmuar) - (3.34)
Proof: Similar to Theorem 3.2.

Theorem 3.3, on the other hand, becomes slightly stronger:

Theorem 3.3a: With S chosen as in Theorem 3.2a, we can bound x(S) as fol-
lows:

max (csc 8; + Vesc¥F 9 - 1) < x(S) s Yescd; . (3.35)

i=1
Proof: Similar to Theorem 3.3.

The upper bound of Thecrem 3.3a generalizes a resuit of Wilkinson [Wil-
kinson2, p 89] for one dimensional invariant subspaces. Note that the "spec-
tral condition numbers” 1/]|s;| used by VWilkinson and others
[Smith, Wilkinson2] are just csc ¥; (or || P,||) when the invariant subspaces

are one-dimensional. When tcsc ¥, is large the upper bound in (3.35) is
=1

comparable with the upper bound on x(Sgerrua) given by Bauer [Bauer4,

Theorem VII] in the case of one-dimensional invariant subspaces.
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This choice of S is more difficult to compute than the S of Theorems 3.2
and 3.3 because of the need to compute the csc §;, though not much more

difficult if the subspaces are all one or two dimensional.
3.5 Proof of Theorem 3.1
This theorem was stated in section 3.3.

Unit vectors z € C™ and y € C* satisfying

Yo (A"V2)*BC % = || (AV3)*BC V2| (3.38)
must exist. Use them to construct the unit vectors

2= AV |A VY| . w=CVez/||CVe| (3.37)
and
s(8) = Lf, i‘ons‘:,} . (3.38)
We want to consider H acting on the 2-dimensional subspace in which s(3)
lies. Now
s*(9)Hs(8) < A (3.39)
implies
[2*sind, w*® cosV] B} [2sinv] <A (3.40)
' B* C| lwcosd] '
or

8ind - 2*Az + cos®y - w*Cw + sinYcosd (w*B*z + z*Pw)<s A . (3.41)
To simplify notation, let a = 2*4z and ¢ = w*Cw.

From (3.38) and (3.37) we know that

s*Bw = || (AVABC V2| / (| AV %] - | CV2z]]) (3.42)

= || (4~VE)BCV2|| - || AVRz]] - || CV2w]|
Since (CV®)*CV2 = C, we get ¢ = w*Cw = || w*(CV?)*CV || = || CV2w||2

Similarly, a = z%42 = || A}/22| 2, so (3.42) becomes
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2*Bw = || (47V®)*BCV?|| - Vac . (3.43)
Substituting (3.43) into (3.41) and rearranging, we obtain

(53 ;a + (—")c;a cos2y + Vac || (4A"V2)*BC VY| sin28< A (3.44)
Since ¥ was arbitrary, we can maximize the L.H.S. of (3.44) over 4 yielding

(529 + V(G2 v ac [[AVABC V2 2sA . (3.45)
or
RYFI V(A - (c+a)/2) - ((c-a)/2)*
1 (47V3)*BCV2)| < = (3.48)
=VYA~-a){A-c)
, Vac '
Similarly, the inequality
A< s*(9)Hs () (3.47)
implies
AS (%P—) + (5'2'—“) cos28 + Vac || (A-V2)*BCV?|| sin29 . (3.48)

Minimizing the R.H.S. of (3.48) over ¥ we obtain

A= (22 - /(552 + ac || (4-v)eBC V2|2 (3.49)
or, rearranging,
- VE =N =N
Il (4-v2)eBC V2| s SE=20E : (3.50)

Combining (3.48) and (3.50) yields

1 (4-2)*8C¥|| < min{VE =N e =N/ (@) . VIE= &) (A = 6)7(ae)) -
All we know about 2°4z = a isthat A\ a < A, and similarly A< ¢ = w*Cw < A

Thus

I1A"Y#)*BC3| = max min{VENG=N/ Ta) . VIR=alE=7)/ T7a)(3.51)
Since (a = A\)/ a is an increasing function of @ and {A — a)/ a is a decreasing

function of a in the range A=a<A, we see the max in the last inequality



occurs when the two arguments of the min are equal. This equality implies

(@a=-NF-AN=QA-a)(A-7) (3.52)
or

a+y=A+A. (3.53)
Substituting (3.53) into (3.51) yields

| (A"V2)sBC"V?|| = m axV{y =A) (A =9)/VrHA+ A -7) (3.54)
= A=A
A+ A
= k= 1
c+1
as desired.

Any 2 by 2 positive definite matrix whose diagonal entries are equal
shows the the inequality of Theorem 3.1 is sharp.

We now show that given x and Z = (A"?)*BC~V2 such that || Z]| <1
and the inequality of the theorem is sharp, it is possible to construct an &
with the given constraints. Simply choose

A=J] , €C=I and B=2 (3.55)
corresponding to the (arbitrary) choice A=1+ || Z]| andA=1-1|]2]|. Itis
easy to verify that every inequality in the proof is sharp for this choice of 4,
B.and C. QED. '

Theorem 3.4: Let H, A, A, and £ be as above. Define X172 such that
X"V x-1/2)* = X' Then the following inequalities are sharp:

I BC| £ (V& - 1/R) (3.56)
Ha-lB8|| < ;—(\’E - 1/ Vk) (3.57)
I8 s (- (3.58)

2
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1 (A"Y2)*B|| = VK - VX (3.59)

| BC/3|] = VK - VX (3.80)
Proof: All the proofs are analogous to the proof of Theorem 3.1. To prove
(3.58), for example (also proved in [Bauer3]), choose z and y unit vectors
such that

g*BC 'y = || BC™||
and let

z=Cly/]lClyll
Consider H restricted to the two dimensional subspace in which

=) = [23im)

lies. The rest of the proof follows similarly to that of Theorem 3.1.

We can also show that given x and arbitrary R = BC™! such that (3.56) is
sharp, it is possible to construct an H with the given constraints. Simply

choose

c=1 . A=(-"2—2-:—l-)1 and B =R (3.61)
corresponding to the (arbitrary) choice A=(x+ 1)/2and A= (k + 1)/ 2«. It
is easy to verify that every inequality in the proof is sharp for this choice of
A, B,and C.

Note that Theorems 3.1 and 3.4 are still true when 4, B, and C are con-
forming submatrices extracted from a larger H (or @*HQ with @ unitary)
since the bounds are monotonic in x (or A and A). In particular, if A, B, and C
are scalar Theorem 3.1 becomes an inequality of Wielandt [Bauer2).

2.8 Computing a Function of a Matrix

In this section we want to show why a well conditioned block diagonaliz-

ing matrix S is better than an ill-conditioned one for computing a function of
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a matrix T. Assuming f (T) is an analytic function of T, we compute f(T) as
follows:
(8y)

7(T)=r(585") =57(8)S* =S : s (3.62)
7 (8m)

The presumption is that it is easier to compute f of the small blocks 8; than
of all of 7. We will not ask about the error in computing f (8;) but rather the
error in computing 8 = S71TS and f(T) = Sf(8)S~.. In general, we are
interested in the error in computing the similarity transformation
X =SYs™.

We assume for this analysis that we compute with single precision float-
ing point with relative precision £. That is, when = is one of the operations
+,—,% or /, the relative error in computing fl(as) is bounded by &:

fi(aw) = (a) (1+e) where |e] se¢ . (3.83)
Using (3.63) it is easy to show
Lemma 3.5: Let A and B be real n by n matrices, where ne <.1. Let |A4|
denote the matrix of absolute entries of 4: [A|y = |4;!. Then to first order

in &£ the error in computing the matrix product AP is bounded as follows:

|1(AB) — AB| = nelAl |B] . (3.84)
Proof: See [Wilkinson1].

Computing X = SY5~! requires two matrix products: Z = fI(SY) and
X = f1(ZS71), where we assume S and S~! are known exactly. Applying

Lernma 3.5 to these two products leads to

Lemma 3.8: To first orderin ¢

| £U(SYS™") = SYS7!|| g < 2n®ex(S)| Y| ¢ . (3.65)




Proof:

HrUSYs™) - 5Ys | g
= || | sU(SYS™) -SYs! | |lg
= || | FUSYS™) = U(SY)S™! + FU(SY)S™' - SYS™' | i g
< || | SUSYST) = sU(SY)ST | |lg + || | SUSY)S™! - SYS™ | ||
sne || |SUSY)| IS |lg +nell IS |Y] IS lg
s2ne ||SilellYlle IS e
(to first order in ¢)

s 2n% «(S) Il Yl g
QE.D.

Assuming this bound is realistic, it is clear that picking S to keep «(S)
small is advantageous. The error in computing similarity transformations of

matrices s discussed in more detail in Wilkinson [Wilkinson2, chap 3].
3.7 On Projection Norms as a Partitioning Criterion

The analysis of the last section suggests that if the purpose of our eigen-
decomposition is to compute functions of matrices, then it may be sufficient
to compute the partition T={0;,...,0,] of ¢ subject only to the constraint
that || P;|| be less than some threshold ® for each i, rather than the more

complicated requirement that the dissociation between ¢; and | o; be larger
Jm

than some threshold #. This is because the error bounds depend only on pro-
jector norms. For example, it is trivial to compute the exponential of a diago-
nal matrix by exponentiating each diagonal entry, and any diagonal matrix is
decomposable by the projector norm criterion (all projectors are of norm
one). The more stringent dissociation criterion, however, would forbid any
decomposition of the identity matrix, which is clearly a bad idea. Kiigstrtm
[K8gstrém2] has used this partitioning criterion successfully for computing
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matrix functions.

There is, however, a small problem with defining ¥ in terms of bounded
projector norms instead of the dissociation criterion: partitions defined by
bounded projector norms do not satisfy the intersection property described
in section 2.1. In other words, I! = {o,| 0, . 03} may be a legitimate partition
since || P, + P,|| = || Ps|| < %. and 2 = {0, Uog . 02} may be a legitimate par-
tition since || P, + Psl| = || Ppl| <&, but T = £!'NI2 = {g,, 0,, 03} may not be
legitimate since || P,|| can be as large as || P, + P3| < || P,l| + || Ps|] < 2*%.

Consider, for example,

0z z|
T= 1 0
-1
with z? a little less than #2-1, 0,={0{, 0,={1], and o3={—1]. A factor of 2 is

not bad, especially since it does not seem likely we can measure || P|| or the
smallest || §T|| that accurately for a reasonable price. Nonetheless, it is
unfortunate that we lose the intersection property which makes the best par-

tition well defined.
3.8 Applications of a Variation of Theorem 3.1

It is more convenient here to use a slight variation on Theorem 1, stated

as (3.56) in Theorem 3.4:

| 478l < 3-(VE - 1/K) .
Application 1: Cholesky without square roots. The square root free Cholesky
algorithm (triangular factorization) decomposes a positive definite Hermitian

matrix H into the product of a unit lower triangular matrix L, a nonnegative

diagonal matrix D, and L*:

H = LDL*
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We wish to bound the entries of L. Consider the following partitioning of the

cRAEJP AT e

From (3.88) we see

decomposition:

Llplk' =FB

R =(L,D,)'F
= L*(L,D,L*,)'B
=[*\A"'B .
Since L®, is unit upper triangular, the last row of K and the last row of A~ 5
are identical. But the last row of R* is the conjugate transpose of a subdiago-

nal column of L. Thus

|| subdiagonal column of L|] = || last column of corresponding A™'B|]

< || all of corresponding A"!B|| .
and so Theorem 3.4 implies

|| subdiagonal column of L|| < %-(vz -1/VE) .
A 2 by 2 example suggested by the proof of Theorem 3.4 (see (3.80)) shows

this bound is achievable.

This bound is tighter than the simpler bound

|Lu|s\/l)}‘—D;S/D,-,sV!K—XWX:\m—I f (3.67)
which is derived by considering the i,i-th entries of both sides of H = LDL*:
L§Dy + Dy + positive terms = Hy .
This result can also be used to get a lower bound on «{H) given its Chole-
sky decomposition.
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A similar application to Gauss-Jordan elimination appears in [Bauer3]

Application 2: Gram-Schmidt Orthogonalization Process. The Gram-Schmidt
process takes a set of independent vectors v, €C*, 1<i<m, and produces a
set of orthonormal vectors g; €C", 1<i<m, where g¢; is a linear combination
of v, through v; and orthogonal to v, through v;_, for i>1. We wish to bound
the coefTicients of g, to g;_; (or v, to %) in the expression for g;. We do this
by showing Gram-Schmidt to be equivalent to square-root-free Cholesky per-

formed on a certain matrix, and use Application 1.

The Gram-Schmidt process expresses g; as a linear combination of v;
and g, through g;-,. Let V be the n by m matrix whose columns are the vec-
tors v; and let Q be the » by m matrix with columns ¢;. Then the Gram-
Schmidt process may be expressed succinctly as

V=@DV?*U , (3.68)
where U is an n by n unit upper triangular matrix and 0 is ann by n nonne-
gative diagonal matrix. The entries of U are the coeflicients we seek to
bound. Multiplying both sides of (3.68) on the left by their transposes, we
obtain

WV = UDU . (3.69)
U is the factor of V*V obtained by doing square root free Cholesky. Thus,

from Application 2 we see

|| superdiagonal column of Ul| < é—( Ve(P*V) - 1/ V(7)) (3.70)
which is the desired bound.

If we wanted to express g; as a linear combination of v; through
instead of v; and ¢; through g;_,, we would express the Gram-Schmidt pro-

cess as
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vOD-v/2= @ | (3.71)
What is a bound for the columns of 0? Multiply both sides of (3.71) on the the

left by their transposes to obtain

DVepewvOD-V2= Q=1 , (3.72)

or

(»V)1= 001D . (3.73)
D is the factor of (¥*V)~! obtained by doing square root free Cholesky start-
ing at the lower right corner of (¥*V)~! instead of the upper left corner as is

usual. Thus, from Application 2 we see

|| superdiagonal column of 0| = :21—( V(P - 1/ Ve((PV)T)) (3.74)
= 5 (VEPY) - 1/ VEPT))

since k(M) = k(M) for all #. Thus, we get the same bound on the colurmnns

of 0 as on the columns of U.




Chapter 4: Lower Bounds on diss(0, . 0; , region)
4.1 Introduction

In this chapter we present a new lower bound on dissy(o, . 05 . region)
which is sharper than previous lower bounds. In section 4.2 we present a his-
tory of previous lower bounds, in section 4.3 we present and prove our new
bound, and in section 4.4 we present examples when the new lower bound is a
good estimate of dissy(o,. 0z, 7Tegion), and other examples showing how
badly the lower bound can underestimate dissy(o, , 0z , region). These exam-
ples will be needed in chapter 8 on probabilistic bounds. Since we will only
be using the 'region” based dissociation notion, we will drop the word
"region” from the arguments of the dist function for notational simplicity in

this chapter.
4.2 Previous Lower Bounds

We discuss three previous lower bounds in this section. The first two, due
to Dunford and Schwarz, and Bauer and Fike, are usually called inclusion
theorems because they give upper bounds on the perturbations in eigen-
values given the norm of the perturbation. We will use the results of Chapter
3 to show that these results are essentially identical and derivable from
Gerschgorin's Theorem [Isaacson)]. The third result, due to Stewart, was until
now the sharpest known bound. We will discuss lower bounds on dissg(0,; . 7).
which are also lower bounds for dissg(0, , az) by inequality (2.4).

The first result is due to Dunford [Dunford, lemma 8] and Schwartz

[Schwartz, lemma 3]. Taken together, these lemmas show:

Theorem 4.1 (Dunford and Schwartz): Let 7 be completely diagonalizable
with eigenvalues )\ and corresponding projections P;. If A' is an eigenvalue of

T+E, then for some i




N =X =4 -max || Al || E]]

In other words, the eigenvalues A' of T+E lie in circles of radius
4mf.x|| Pl || E|| centered at the eigenvalues of 7. From this result, it is
easy to derive the following lower bound on dissg(0, . 02):

Corcllary 4.2:

{1‘1512 (A1 = Ag

dissy(o, , >z —
(1. %0 g AL

Proof: This condition assures that no circle around any A;€0, can intersect

any circle around some Az€0p. Q.E.D.
The Bauer-Fike Theorem has similar assumptions and conclusions:

Theorem 4.3 (Bauer and Fike): Let T be completely diagonalizable with
eigenvalues A, and diagonalizing similarity S. If X' is an eigenvalue of T+E,

then for some i
I = x| < int e(S) | £l
where the inf is over all diagonalizing similarities S.

This theorem yield a lower bound on dissz(c,, o) in the same way as

Theorem 4.1:

Corollary 4.4:
min |A; = Agl
. A€o
dl!Sg(U 1 0’3) b W
Proof: Analogous to Corollary 4.2.
We claim these two theorems are nearly equivalent because Chapter 3

showed that

m‘ullhll sigfx(s)sdim(T)-mgxllﬂll . (3.8)
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so that the expressions in the denominators of the corollaries cannot differ
by more than a factor of 4 dim(7). Furthermore, the Bauer-Fike result is

easily derivable by applying Gerschgorin's Theorem [Isaacson] to the matrix

STS-! + SES™! = diag(\;) + SES™! .

The drawbacks of these simple lower bounds on dissz(o, , 05) are as fol-

lows. First, they assume that T is completely diagonalizable, and so do not

apply to defective matrices. Second, even if T is diagonalizable, the

max|| F;|| term may be too large and so the lower bound too small because

of nearly equal eigenvalues in some irrelevant part of the spectrum. For
example, by making 7 small in

100 .01
100+7n

1
0

(where 0,=§0} and 0,={100,100+7,1}), we can make the lower bound on

(4.1)

dissy(0, . 03) as small as desired, whereas dissy(0, . 03) actually equals .5 (we
will prove this later; the best £ is nonzero in the lower right 2 by 2 corner

only).

The heretofore best lower bound on dissy(o,, 0z) is due to Stewart

[Stewart):

Theorem 4.5 (Stewart): Assume without loss of generality that T is of the

'

with g,=0(4) and o = g(B). Let P be the projection corresponding either to

form

0, or gp. Then
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sep(4.8)
4 || Pl

Proof: The proof seeks a unitary similarity of a special form which returns

dissg(0, . 0g) > (4.2)
T+E to block triangular form. The nontrivial part of this similarity satisfies a
matrix Ricatti equation which can be solved by an iteration which is a con-
traction as long as || E}] is smaller than the expression on the right hand
side of (4.2). The details of the proof are not needed in this thesis; see

Stewart [Stewart] for more information.

Actually, Stewart's proof only appears to show that sep(4.8)/ (4| P}|) is
a lower bound on dissy(a, . 03 . path). It will follow, however, from the com-
ments following theorem 4.8 below that it really is a lower bound on
dissg(0, . 02 , Tegion).

Stewart’s bound is generally much tighter than the bounds of Dunford-
Schwarz or Bauer-Fike. We are pleased, therefore, to have found the improve-
ment in the next section.

4.3 A New Lower Bound on dissy(0; , 03)

Our improvement of Theorem 4.5 is based on an approach used by Varga
and Feingold [Varga] and more recently Meyer and Veselic [Meyer] to prove a
block version of Gerschgorin‘s theorem.

Theorem 4.8: Let 7, A, B, and C be as in Theorem 4.5. Then

sep,(A.B)
(1Pl + VI[PIE-1

Proof: If A is an eigenvalue of T+£ but not of T then

dissg(o, , 02) = (4.3)

0 = det(A-T~E) = det(A~T) det(/-(A-T)"'E) = det{/ ~(A—-T)"'E)
implying that

1< ||(A-T)2E|| < [|(A=-T)] || B
Now we choose a block diagonalizing similarity S as suggested in (3.20) so
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that S-'TS = diag(A4.B). (Note that the other S suggested in section 3.3
would yield diag(A,B') where B’ is similar to B but could be otherwise much
different.) Thus

1< |] 57 diag((A-4)"'. (\-B)") SI| - || B}

< &(S) max (]| (A=) . | (A=B)7M}) || 1)

or
&(S)1| E1l = min (|| (A=4)711 7. (| =B) 1Y)

Just as the inequalities of Theorems 4.1 and 4.3 show that the eigenvalues of
T+FE lie in circles centered at the eigenvalues of T, this last ineguality shows
that the eigenvalues of T+FE lie in certain regions around the eigenvalues of
T. And just as in Corollaries 4.2 and 4.4, we can derive a bound on || E'|| such
that the regions belonging to g(4) and the regions belonging to ¢(B) remain
disjoint.

Indeed. as long the region

(S| EN = 1| (A-4)H] !
remains disjoint from the analogous region for B, || E|| <dissy(o, . 03). Ima-
gining these regions as functions of || £}, there is ¢ smallest || £'|| for which
these regions can intersect, which means there is a ' such that
(S E'|l = | (N=a)H| = [|(N=B)"| ! .

From the definition of sep,, it is clear that sep,(4,5) is iess than or equal to
both || (A'=A4)~![| ! and || (A'~B)~}{| ~1. Thus,

K(S)|| E'|| = sep,(A.B)
or, substituting the value of x(S) and rearranging

sep,(4.B )f
WPl +VIPIIF-1
Since || £'|| is the smallest value for which the regions can possibly inter-

B =

sect, the proof is complete. Q.E.D.
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Lemma 2.10, plus the inequality
IPIl + VITPIIT=1=2] P||
show that the bound of Theorem 4.6 is always larger than the bound of
Theorem 4.5. The two bounds can be significantly different because sep can
be much smaller than sep,. Just how much smaller is the subject of the next

chapter, but we present an example to illustrate typical behavior. If

A= 1| and B=-4

are both n by n matrices, then

sep(4.8) = 0(e®*-1) and sep,(A.B) = 8(e™)
(the notation f=8(g) means f is exactly of order g: f =0(g) and g=0(f)).
We discuss this example in detail in chapter 5. Experience in constructing
examples like this led us to our conjecture in chapter 8 that even though sep
and sep, are almost always close, when they are far apart they can differ by

at most a square as in the example.
An interesting corollary of this theorem holds when T is block diagonal:

Corollary 4.7: Suppose T is block diagonal:

dissy(a, , 02) = sep,(4.B) (4.4)

V2 sep)(A,B) = dissg(o, , 03) = sep,(A4.B) (4.5)
In particular, if A=?A¢ and B:?B‘ then

Then

dissy(0, . 0p) = n%n sepa(4 . By) (4.8)
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Proof: || P|| is clearly 1. Thus, the lower bound in Theorem 4.5 equals the
upper bound in Theorem 2.8, proving (4.4). (4.5) follows similarly. (4.8) fol-
lows from Lemma 2.12. Q.E.D.

Thus, dissz(o, , 02) satisfles the same divide and conquer paradigm as do
sep (Lemma 2.8) and sep, (Lemma 2.12). In particular, there is a smallest
perturbation (measured with || -|| and not || || g) with the sam.e block diago-
nal structure as 7. This proves the claim made about the T in (4.1), since it
is block diagonal.

4.4 When is the Lower Bound a Good Estimate?

In this section we discuss when the lower bound of Theorem 4.8 is likely
to be sharp. We have already seen that it is sharp for block diagonal
matrices. We will show that it is also sharp for 2 by 2 matrices, and nearly so
when 4 is 1 by 1 and 5B is diagonal (we will need this special case in chapter 8
on probabilistic bounds). We then present two exampies when the lower
bound is much too low: in the first example 4 is 1 by 1 and B is a Jordan

block, and in the second both A and B are 2 by 2 diagonal matrices. This
second example leads to a “"combinatorial” improvement un our new lower

bound.

Lemma 4.8; If

is 2 by 2, then

dissg(0, . 02) = dissy(a,, 02) = TI—P—IT%L_—_ :m T

= lp-al®
2(le] +VciT+ [b-a]?)

Furthermore, this last expressions also equals both dissg(c, , 0p . path) and



dissg(c, . 02 . path).
Proof: Choose w on the unit circle so that wc/ (b —a) is real and nonnegative.

Then choose ¥ so that

we

cot 4/2 = b—a

Let

p=llPll =Vie]cl¥/]b—al®.
It is 2asy to see that the matrix
_ |eoss Bsins]
~ |sind BHcosd
is unitary, and that

a+d

2
T"=Qre" = (b~a) a+b)

2(p+Vp™-1) 2 |

where - represents a complicated expression that is not important. Clearly,

by changing the lower left entry of T to O we will change 7' to a matrix with a
double eigenvalue at {(a+bd)/ 2. Both the two norm and Frobenius norm of this
rank one perturbation are equal to the lower bound in Theorem 4.8. A little
manipulation yields the expression in the statement of the lemma. This
proves that the expression in the statement of the lemma is equal to both
dissy(a, , 02 , path) and dissg(o, , 02, path). Since
diss(o, . 02 . path)=diss(o, . 0, . region), the lemma follows. Q.E.D.

The next example of the lower bound being nearly sharp is the matrix T
with a 1 by 1 block A=[a], an n by n diagonal block B=diag(b;),anda 1byn
block C=[c;.....,ca):




61

Cl * Cn]
b,
b
We need to use this example in chapter 8 when we show that our new lower
bound is likely to be sharp.
The geometry of this example is simple. sep)‘(A.B)=m‘in|a.-bi[/2; say

the minimum occurs at t=ig. VIIPHE-l:m‘axIc‘/(u-bi)I: say the max

occurs at i=ip. la-b¢3] gives the distance from a to the closest eigenvalue
of B, and || P|| gives the maximum instantaneous speed at which a can move
under perturbations in T [Kato2]. Therefore it makes sense that the smal-
lest perturbation needed to make a hit an eigenvalue of B be approximately
distance/speed = |a-by|/ || P{| = sep,/ (2| P||). The algebra is quite
messy, but the proof is similar to that of lemmma 4.8: pick a unitary matrix @

[cosﬁ osind

Q= |sins Beoss
(¥ is a real angle and {w|=1) so that

C‘P

Bip

- represents a complicated exhression that is not important, and § is the per-

b, |
@ =1s a+b‘},—b‘s]'

turbation which makes the eigenvalue a move to by The exact formula for

|&] is rather complicated, but it is easy to see that when a is much closer to

b, than by, |8| cannot exceed the lower bound in theorem 4.8 by more than
a small factor.
From lemmas 2.1 and 2.3, we see that if B can be diagonalized by a simi-

larity of condition number «, then the lower bound can not be too low by

more than a factor of x2 Thus, it should come as no surprise that our first
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example of when the lower bound is not sharphas A 1by1and Fann by n
Jordan block, since a Jordan block is the "least diagonalizeable” matrix of all:

T= ] (4.7)

We will see that the upper bound sep,(A.B)=8(c"), the lower bound =8(¢%"),
and dissy(0, . 02)=8(e"*!); thus, neither the upper nor the lower bound is
asymptotically correct, but the upper bound is a much better estimate than
the lower bound for large n. The proof that dissa(0; . 6)=0(2"*!) will follow
from considering perturbations only in the lower left corner, and the proof
that dissg(o, , 02)=0(e"*!) (i.e. dissg(o, .0;) is decreases no more quickly
than £™*!) will follow from analyzing the characteristic polynomial of T+Z,

where E is a general perturbation.

That sep,(4.8)=0(c") follows from Lemma 2.11. Similarly, it is easy to
see that || P|[ =6(e ™) so that our lower bouna on dissy(o, , 0p) is B(c>).

To estimate dissy(0;, 0z). we consider perturbations in the lower left

corner. A simple computation shows that if we change 7., , from 0 to

n n
n l g™+l
n+l

then the 0 eigenvalue and one of the eigenvalues at ¢ coalesce at ¢/ (n+1). To

-1

hew= 0w

show that dissg(o,, g2) cannot be of order ¢* for z>n+1 we consider the
characteristic polynomial of T+£ 2%, where || £{| =0(1). If £=0 the charac-
teristic polynomial is
1
det(\ =T) = 3} 7= (-2} AV 141 = )N
(1) = § ol (e L0
where a;(z) is a polynomial in ¢ with lowest order (dominating) term en*!~J

for j=1 and gg=0. It is easy to see that




1
det(A/-T-E£) = % a,(c)M
i=0
where a’;(¢) has the same dominating term as a,(¢) for y»1 and a o{e)=8(c").
By changing variables to u=\/¢ the characteristic poiynorual becomes
det(A /=-T-E) = e**' (u(u-1eepiutees =
where p(0)=0 and its remaining coefficients are O(1) Cle - , fz>n+1 then
the eigenvalue at A=0 remains isolated from the e\genvaiues ot Az¢ (u=1) by
the continuity of the roots of a polynorual as functions of the ~oefficients If
z=n+1 then this argument breaks down and indeed we have dispiayed a per-

turbation of that magnitude that makes eigenvalues coalesce.

The next kind of example that shows that the lower bound of theorem
4.8 can be low depends on dim(4) and dim(B8) both being at least 2. The idea
is that sep), will be small and || P|| large because of nonoverlapping parts of
the spectra of A and B. In other words, sep, will be determined by A,(4) and
A(B), and || P|| by A2(4) and Ax(B). It will turn out the dissy(a, . 02) will be
the smallest perturbation that either makes A;(4) coalesce with A\,(B) or
Ae(4) coalesce with; M(B). This example will lead to a systematic improve-
ment on theorem 4.8 obtained by considering all possible partitions of g, and

oz it illustrates the combinatorial complexity of the problem.

Let

1 0

-1 1 | _hd
T= 142 =| B

-1+Ve
Simple computations yield sep,(4.B)=¢/2 and || P|| = V{1+¢)7¢, providing
a lower bound on dissg(a, , gz) of &(z¥?) and an upper bound of ¢/2. We will
show that the upper bound is a much better estimate of dissy(o, . 0p).

Clearly, to make g,={—1, 1] coalesce with gg={1+e , ~1+Vz], either {1} has
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to coalesce with {-1, -1+Vz, 1l+g}, or (-1} has to coalesce with

§1. 1+, —=1+Ve}. Thus

dissy(0y . 0g) =2 min (dissp(§1) . §—1, =14+VEe, 1+¢}) . dissp(§-1}, {1, 142, —1+VE}))
= min (G FeviTs) = EVIT

In other words, dissg(o, . 03) is determined by the size of the smallest pertur-

bation that makes ~1 coalesce with —1+Vg; the rest of the spectrum is

irrelevant.

In this example we used the fact that the lower bound of theorem 4.8 is
exact for 2 by 2 matrices, but this was not necessary. In fact, if
I, = {g,),...0;} is any partition of ¢;, the above argument shows that

dissy(0; . 09) = rn‘in disse(0y; . 0—0y)
since some eigenvalue from some o0,; must coalesce with something in its
complement g—o0y. If we consider all possible partitions &, of ¢; (including
the trivial partition {g,}) and similarly all partitions I, of o; we obtain the fol-
lowing equality:
Theorem 4.9: Let g; and I, be as above for i=1,2. Then
dissy(o, , 03) = max ( n}:?x .',’}é’;‘, dissy(0y . 0—-0y4) . m::x .:ueg' dissy(0-0g; . 025) ) .
Proof: That the right band side is no greater than the left hand side follows
from the previous discussion. Equality must hold because dissy(s, . 03) is one
of the candidates of the maximumn on the right. Q.E.D.
If we substitute the lower bound of theorem 4.8 for each diss; expression
on the right hand side of the last equation, we obtain an improvement of the

theorem, as illustrated by the last example.
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Chapter 5: How Far Apart can the Upper and Lower Bounds on dissg(0, . 03)
Be?

5.1 Introduction

Let us summarize the upper and lower bounds already proven in
theorems 2.10 and 4.8 (we assume T has the structure shown in (2.6), with

0,=0(A) and o,=0(B)):

Theorem 5.1:
sepa(A.B) = dissy(0, . 02 . path) (5.1)
. . Sepx(A.B)
= dissdey o) T VT =T
and
V2 sep\(A.B) = dissg(0, , 02 . path) (5.2)

sepy(4.8)
1P| + VI PIF~1
In this chapter we will analyze how far apart these bounds can be. We will

< dissg(o; , 0z, region) =

present only global bounds, valid for all matrices and depending only on the
dimensionality. Probabalistic bounds, which show when the upper and lower
bounds are likely to be close together or far apart, are presented in chapter

Our worst case analysis starts by substituting the upper bound for || P||
of lemma 2.5 in inequality (5.2) ((5.1) is so similar to (5.2) that we will not
consider it further):

sep,(A.B)
Il Clle (5.3)
sep(A.B)
_ sepx(4,B)-sep(4.B)
~ sep(A.B) + 2| Cll g

V2 sep,(4.B) = dissg(o, , 0p) =
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’epl(A-B)'sep(AvB)
sep(4.B) + 2 || T|i g

We normalize by taking || T|| #=1 so that dissg(s, . 63) actually measures the
relative change in T. With this normalization sep<2 and sep,<1, so the
denominator of the last right hand side must lie in the interval [2,4] and is

therefore not important:

Corollary 5.2:

V2 sepa(4.B) = dissg(o; . 03) = sepy(4.5) sep(4.5)/ 4 . (5.4)
For this coarsening of (5.2) to be realistic, || P|| must be near its largest pos-
sible value 1+|| T|| 2/ sep. || P|| can fail to be near its bound because || C}| g
is much less than || T|| g: || C|| g is a kind of generalized measure of nonnor-
mality of T with respect to the partitioning {7,.0,}. and contributes to the
bound in the simple way shown above. The way in which the upper and lower
bound can differ greatly is for sep to be small. We know from lemma 2.12
that 2 sep, is an upper bound on sep; the question this chapter asks is how

much smaller can sep be than sep,?

The results of this chapter are as follows (in this chapter we will make
the convention that n, = dim(4)<dim(5) = ng). We show that sep can be no
smaller than a constant multiple of sep;". This means that the lower bound
in (5.2) can be no smaller than a constant muiltiple of the dim(4)+1-st power
of the upper bound. We present examples where the lower bound is actually
the cube of the upper bound, and other examples where it is the square and
either the upper or lower bound may be the more accurate measure of
dissg(o, , 0. path). Since || P|| provides an upper bound on sep (from
lemma 2.5), we may translate our results into upper bounds on

dissp(0, . 0, path) depending on || P||. These resuits, though necessarily
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weaker than the results depending on sep and sep,, reproduce results found

in the literature.

The remainder of this chapter is organized as follows. Section 5.2 sur-
veys historical results. Section 5.3 handles the case dim(4)=1 which works
out especially simply. Section 5.4 discusses the general case dim(A4)=2.
Finally, in section 5.5, we compute dissz(o, , 02) and dissg(o, , 0z) exactly for

normal matrices, in which case the path and region dissociations coincide.
5.2 Survey of the Literature

As stated in the introduction, the literature has concentrated on using
|| P|| for upper bounds on dissy(0, , 0, , path) and dissg(a, . 65, path). Here
we mention three previous works, by Ruhe [Ruhel], Wilkinson [Wilkinson3],
and Kahan [Kahanl1]. Since Kahan's result, stated below, essentially implies
the other two results, we discuss it first.

Kahan proves the following theorem:
Theorem (Kahan): If || P|| >v/n,+1 then

diss,(0, . 05 . path) < 1.22
T (1] P||2=1) &

We prove a stronger result in section 5.4, essentially replacing || P|| by an

upper bound depending on sep. Kahan's proof, which is totally different than
ours, could however be modified to use sep instead of || P||. This modified
proof yields the insight that if the R attaining the infimum in definition 2.4 of
sep has well separated singular values (i.e. some near || R||, the rest near
zero), then the exponent -1/n, of || P|| appearing in the bound can be
replaced by -1, but we do not pursue this approach further, since it would

lead to a probabilistic analysis similar to that of chapters 8 and 7.
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Wilkinson's result [Wilkinson3] only covers the case n,=1 and is essen-
tially the same as Kahan's result. Ruhe's bound is on the distance from a
given diagonalizable matrix to the set P of matrices with at least one multi-

ple eigenvalue, and, by an abuse of notation, may be written

max | A =A; |
distg(T.P) < T Y = :
\/(max [ A 7™0-1)

and is weaker than the previous two results in that it has a higher root of
I P}l in the denominator. It does, however, explicitly depend on the
difference of eigenvalues, which may be small even if || P|| is not large. This

advantage is shared by VZsep, as an upper bound.
5.3 The Case dim(4)=1

This case is particularly simple; dissg(o, , vp) is the dissociation between
a simple eigenvalue and the rest of the spectrumn. From lemma 2.11 we know
that sep and sep, cannot differ by more than a factor of 2:

sepa(A,B) < sep(A.B) = 0qn(B—a - I) < 2 sep,(A.B)
so that inequality (5.4) becomes

Ve 0pun(B-a ' I) 2 dissg(o, , 03) = ‘{Tzc‘z,,m(B—a Iy .
Thus, the lower bound can behave at worst like the square of the upper
bound (recall that || T|| g=1 so that all bounds are on the relative error). The
distance between these bounds cannot be decreased, as two examples of the
last chapter have shown. Lernma 4.8 shows that for a 2 by 2 matrix the lower
bound in (5.2) is sharp. On the other hand, the example in equation (4.7),
which also had a two point spectrum, shows that the upper bound in the last
equation is more accurate for a case where the upper and lower bounds

differ by a square. Thus, we cannot hope to improve the bounds in (5.2) much

if we only use measures like sep,, || P|| and similar global measures. We will
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see in chapter 8, though, that the lower bound of (5.2) will be accurate unless

T falls into a set of small probability.

Since lemma 2.5 shows that || P|| provides a lower bound on sep and
bence sep,, we can change the upper bounds in {5.1) and (5.2) to upper

bounds in terms of || P||:
Lemma 5.3: Let dim{4)=1. Then

V2 .
——”—mk dl!Sg(U‘ ' 02, pa.th)

“ P1” = = diSSZ(GI . O2 .Path)

Proof: Follows immediately frorm lemma 2.5, theorem 2.9, and lemma 2.11.

Q.E.D.

This yields the resuits of Kahan [Kahan1] and Wilkinson [Wilkinson3].
5.4 The Case dim(4)=>2

The goal of this section is to prove

Theorem 5.4: Let T have the structure of (2.8), and assume }) T}| g=1. Then

2 sep,\(4,B) > sep{4,B) > —_—
Pa o ny - (1 +3epyi4.B))™M ™

In other words, sep can not be any smaller than some constant multipie of

sepy(4.B) 2 [ sepy(4.5) ]"‘
==

sep:‘. After proving this, we will give an example showing that sep can indeed
be as small as sep?. We believe that this is worst case behavior, but have not

been able to prove it.

Proof: The first inequality in the theorem is just lemma 2.11. The proof of the
other inequalities are very simple given the expression sep(4.B)=|| ¥54{| ~!
from definition 2.4. This expression means that an upper bound on || ¥zl

provides a lower bound on sep(4.5). To compute such an upper bound, con-
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sider the following form of ¥5 4 for n, =3, which is analogous to the expres-

sion in (2.9):
—ay ! —ag/ "aar[]
Ypa= B-ag] -t/
B-ﬂ.a'
Thus,

(B—a,,- ) ag(B—ay /)" (B~aggI)!
¥54= (B-az 1)

ag189(B =0, )" (B=ag )" (B~ass /) +ag(B—a,; )" (B~asy /)™
@ (B-az /) (B-asx 1)
(B-ass I)™!

The largest number of (B-ay-/)”! terms that are multiplied together is
three, and they appear in the upper right corner of ¥zY. Similarly, for any
n,. the largest product of (F—ay /)™! terms contains n, of them and occurs
in the upper right corner of ¥3%. Now since || (B~ag /)| ! is clearly an
upper bound for sep, for any i, || (B—ag-/)"!|| is a lower bound for sepy! and
so the norms of the block entries of ¥, are bounded above by sep;“‘ times
a constant. Thus || ¥5Y|| is itself bounded above by sep, * times some con-
stant c,,"‘ depending only on n,. Taking reciprocals, we see that
sep = || ¥5 || - 2 cp,-seprt

as desired.

More precisely, we use the block matrix norm

HAM|ly = max ? | My i

where My is a square subblock of &. If there are n, blocks My in any row or

column of i, then it is straightforward to show that

Ml sng- [[H][y .



T

For example, when n, = dim(M), then || #||, is the usual infinity norm (max-

imum absolute row sum norm) of M.

Now we estimate |[¥5%||. Since 1 is a common upper bound for the
magnitudes of the off diagonal elements of A, the sum of the upper bounds of

the norms of the blocks in the first row of ¥z is
N5l S mg - |l ¥5hlls

n,-2
<n,(sepi!+ 2 sepy 2 (1 + sepl) )
1=0

=n, ( sep? (1 + sep)™ ')

sn, 2™ 'sep ™

(since sep, < 1). This is clearly also an upper bound on the sum of norms of

the blocks in the other rows too. Q.E.D.

Since we are intertested in the case when sep, is very small, bounding it
by 1 as we did in the last equation is rather conservative. A more realistic

bound, true asymptotically for small sep,, may be derived as follows: from

n
the expression for ¥z, we see that the coefficient for the n (B—ay 1)
il

n,-1
(sepy ™) term is ﬁ ¢414- Since the ay satisfy 3 |ay; |1 we see that the
i=) Yy

- 1)"(1“' l)/ 2

last product can be at most (n, , implying that for small sep,, sep

{ng-2)/2 se

is approximately bounded below by (n,-1) A,

As in the dim(A4)=1 case, knowledge of || P|| provides a lower bound on

sep which in turn provides an upper bound on dissg(a, . 03 . path).

dissg(s, . 02, path) s V2 sep, = V2 (n, 2™ ' sep )™




‘\,22(54%( 1 /n,
2’ VTPl

1 /n
L) 3.40( W 4

Thus, we have an upper bound on dissg(0, ., 0z . path) essentially proportional
to the n,-th root of 1/ || P}].

Iheorem 5.4 improves results of Kahan [Kahanl], Ruhe [Ruhel], and Wil-
kinson [Wilkinson3].

Now we present an example to show that sep can indeed be as small as

sep?. Consider the n by n matrices

a=| 4| ena B=-aT.
e
A simple computation shows that the upper right corner of ¥;} (the largest

element) is
- (2n-2)!
pl-on

Nrin~1) -

(by Stirling’s formula) which means sep is bounded below by the reciprocal

of this quahtit.y and above by n? times the reciprocal. Symmetry considera-
tions show that A=0 is the value which attains the minimum in the definition
of sep,. Since the largest entry in A™! is

(A ) 1al =™
we see that sep, is bounded below by £® and above by ne™. Thus, for fixed n

and ¢ approaching zero, we see that sep is bounded below by sepf.



5.6 dissp(0, . 02) and dissg(0, , 02) for Normai Natrices

For normal matrices it turns out that we can compute dissg(0, . 02) and
dissg(a, , 02) exactly. This is because a matrix is normal if and only if if can
be diagonalized by a unitary similarity. Thus, the upper triangular form of T
that has been our starting point is actually diagonal, and all projectors are
orthogonal and hence of norm 1. Thus, the upper bound and lower bound we

have been comparing in this chapter are e-ual and we have

Theorem 5.5: If T is normal, then

diss,(0, . 0g . path) = dissy(0, . 02, region)
= dissg(0, , 02 . path) = dissg(0; . 07 , region)

_ min A1 = Agl
2

Proof: The expressions for dissg(0, . 0z , region) and dissz(0, . 02. path) follow
from the discussion of the previous paragraph. Now let 7" be the 2 by 2
diagonal submatrix of T containing A'; and A’z on its diagonal, where A’} and
A, attain the minimum in the statement of the theorem. The claims for
dissg(g, . 02 . 7egion) and dissg(o, , 0z, path) follow directly from applying
lemma 4.8 to T'. Q.E.D.

The perturbation of lemma 4.8 has several interesting properties: from
the construction of lemma 4.8, we see that the perturbed matrix T' is defec-
tive, and hence not normal. Furthermore, even if T is real the 7" may not be,
since by perturbing only two eigenvalues, the eigenvalues of T' may very well
no longer occur in complex conjugate pairs, which means it could not be
real. Furthermore, no other perturbation of minimal Euclidean norm can
yield a normal 7" because the Wielandt-Hoffman theorem for normal

matrices [Wilkinson2] shows that || T—T7"|| g must be at least VZsep,. We exhi-
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bit such a perturbation in the next paragraph.

I, however, we measure perturbations with |} -|| instead of |} -|| g, we can
find a minimum norm perturbation yielding a 7' which is normal, although it
may not be real if T is. We accomplish this by using a rank 2 perturbation
instea.d of the rank 1 perturbation of lemma 4.8. Simply observe that §7 in

b—a a+d
z ) ,
T+eT=| ¢+ a<b|= a+b|=T
P) 2

bas 2-norm |a-b|/2 = dissy(s, , 5p), Euclidean norm VZdissg(s, . 0s). and
rank 2. Applying this construction to the two closest eigenvalues A';, and A'p of
o, and o, clearly produces a normal 7. This 7° may not be real if T is, how-
ever. This may occur if A';, and A’; are complex but not complex conjugate
pairs, because then the eigenvalues of T" will not occur in complex conjugate
pairs, a necessary condition for being real. Sometimes we can still find a real
7' if this happens: if both A’; have nonzero imaginary parts, then perturb
their conjugates X'; and X'; to coalesce also. Since the eigenvector(s) belong-
ing to any A is{are) the complex conjugate(s) of the eigenvector(s) belonging
to A, these two rank 2 perturbations are easily seen to be complex conju-
gates so their sum, the total perturbation, is real. If, however, one of the A

is real, we may not be able to find a real T consider

T= 01
-10
with 0,={0{ and og={i,~i|. The only way for o, and g, to overlap and still have

complex conjugate pairs is for all three eigenvalues to be real. By the
Wielandt-Hoffman theorem [Kato2] this requires a perturbation of Euclidean
norm at least V2, and hence a 2-norm of at least V{Z2/3), whereas
disag(a, , og)=1/2.
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It T is Hermitian, we can say still more. Applying what we said about nor-
mal matrices, we see a minimum || ||  perturbation yields a defective and

hence nonhermitian T, but T is clearly real if T is. The rank 2 perturbation

above also produces a Hermitian 7" which must be real if T is.




Chapter 6: A Probabilistic Model
6.1 Introduction

In the last chapter we presented upper and lower bounds on
dissg(0, . 62) and examples which showed that they could be equal or arbi-
trarily far apart. We did not provide any insight as to when they were likely to
be close or distantly separated. We will provide this insight in this chapter
and the next by fllling in the details of the following description: There is a
surface in the space of matrices such that our upper and lower bounds on
dissg(0, . 0g) are far apart only for matrices within a small relative distance ¢
of the surface. (We say that a matrix M is within relative distance ¢ of a sur-
face if there is a 6M such that M+6M is on the surface and
||6M}|| g <e-|| M| g.) In fact, we will see that the cioser to the surface, the
farther apart the bounds. Furthermore, we can compute an asymptotic
upper bound n(n+1)(n-1)2¢2 on the fraction of the volume of the set of
complex matrices that lie within relative distance ¢ of this surface (n is the
dimension of the matrix). This upper bound shows that the volume of the set
of points within ¢ of the surface goes to zero as ¢ goes to zero. If we interpret
this fraction of the volume of a set of matrices as its probability then we may
state our result as follows: the probability that the ratio of the upper bound
to the lower bound is at most K>1 is at least 1-n(n+1)}{(n-1)2 K2 + o (X?).
In other words, the ratio of the bounds is large with a low probability. This
same sort of description applies to our bounds for sep, in terms of sep, (the
bound is accurate except within a small distance of a particular surface in
matrix space, and the volume of points within ¢ of the surface goes to zero as
a polynomial in ¢), to the probability of being able to completely diagonalize

a given matrix, and to other similar quantities which we will discuss in




chapter 7.

These results will follow from a more general theorem which we will
prove in this chapter. The general problem is estimating the volume of points
within distance ¢ of certain surfaces: homogeneous varieties. A homogene-
ous variety is the locus of solutions of a set of simultaneous polynomiai equa-
tions which have the property that if (xz,, . . . , z,) lies on the surface, so does
(az,, ... .az;) for any scalar a. Since we are interested in relative distance,
it suffices to estimate the volume of points on the sphere of matrices of Fro-
benius norm 1 that lie within distance £ of a homogeneous variety. It is a
remarkable fact that, for complex matrices, this volume can be computed to
first order in terms of only two parameters of the variety: its dimension and

its degree. The main result of this chapter is

Theorem 8.3: let V be a complex purely 2n dimensional homogeneous
variety of degree deg(V) in CV, with n>0. Then the fraction of unit sphere in
C¥ within Euclidean distance ¢ of V is

[¥21] aeg(v) e2¥-m) 4 o (e2t¥-m))

([¥=1] is the binomial coeflicient (N -1)t/ ((n—1)t-(N-n))).
Interpreting the fraction of area as a probability, we may restate this as

Prob(distg(M. V) s £) = [NZ1] deg(v) e2¥ ) 4 o (20-m)
where M is uniformly distributed on the surface of the unit sphere.

Thus, to first order the probability depends on only two parameters of
the variety: the dimension and the degree. This simple result makes it easy
to compute the probability in many interesting cases; we discuss singular
matrices, defective matrices, and polynomials with multiple roots in the next

chapter.




78

We may extend this result to real varieties, but we only obtain an upper

bound on the probability:

Theorem 68.8: Let V be an n-dimensional homogeneous real variety of degree
deg(V) in RV, where n>0. Then the fraction of the unit sphere in RV within
Euclidean distance z of V, (or equivalently Prob(distz{(M ., V) < £) where M is

uniformly distributed on the sphere), is less than or equal to

n &) n f (. Hem 4 o
T eg(V) - ¥ ™ + o (¥ ™) (1)
nt oAl 2ty n T
In Section 6.2 we will deflne the terminology just used, and state the
theorems from geometry and algebra we need to prove our result.
Specifically, we will use Weyl's theorem [Weyl, Griffiths] on volumes of spheri-
cal neighborhoods, and Lelong's theorem [Lelong, Thie, Griffiths] on the area
of a homogeneous variety. In Section 6.3 we state and prove the main result,
and show that the probabilistic interpretation holds for a large class of pro-
bability distributions on the set of matrices. In Section 8.4 we state Bézout's
theorem [Kendig] on the degree of intersection of varieties, which we use to
compute upper bounds on deg(V). In Section 6.5 we extend our results to
real varieties by using Crofton’s formula [Santai6, Griffiths].

Our approach was motivated by a similar analysis of varieties in the
space of polynomials due to Smale [Smale].
6.2 Notation and Lemmas from Geometry and Algebra

To prove our main resuit we will need several theorems from geometry
and algebra. The central result we need from geometry is Weyl's theorem
[WeylLGriffiths] which says that the volume of a spherical neighborhood

(defined below) of a manifold of radius ¢ is well approximated by a polynornial
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in £ for small ¢. The dominating (lowest order) term of this polynomial con-
tains, not surprisingly, the area of the manifold as a factor. Our central aige-
braic result is that the area of that part of a complex homogeneous variety
within the unit ball is equal to the degree of the variety times a constant
which depends only on the dimension of the variety [Lelong, Thie, Griffiths].
We will present several ways of computing the degree of a variety in Section

8.4.

Before discussing Weyl's theorem, we need several definitions from
geometry. (See [Guillemin and Pollack] for more details). A subset M of
Euclidean space RV is called an n-dimensional manifold if it is locally
homeomorphic to R*. m =N -n is called the codimension of M and is denoted
codim(#). M is called a smooth manifold if the homeomorphism and its
inverse are infinitely differentiable and an analytic manifold if they are ana-
lytic.

By lwolume of an n-dimensional manifold M (l=n) we mean the -
dimensional Lebesgue measure of M, if it exists. Note that if I>n this volume
is zero. The notation vol(#) denotes the n-volume of the n-dimensional

manifold M.

An eg-tubular neighborhood of M, denoted 7,(M). is, loosely speaking, the
set of all points of RV within Buclidean distance £ of M. More precisely, it is
constructed as follows: for each z €M, consider the space of all vectors start-
ing at z and perpendicular to M (the normal space at z). The endpoints of all
such vectors starting at z and of length at most ¢ form a closed disk of
radius ¢ and center xz perpendicular to ¥; the union of all these disks forms
7.(M). Moreover, each point in 7,(M) is required to lie in exactly one such

disk In other words, it must be possible to draw exactly one line segment
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from any y€T.(M) to M that is perpendicular to M and of length at most e.
This constraint means that some manifolds only allow tubular neighborhoods
for £ smaller than some bound; for example, a circle of radius r only has
tubular neighborhoods for £<r, because otherwise the center of the circle is
not a distance r<e away from a uynigque point on the circle. In addition, some

manifolds may not have an g-tubular neighborhood at all (see figure 8.1).

If M lies entirely within the unit sphere S¥~! in R, we may analogously
define an e-spherical neighborhood of M, denoted T5(M). to be the set of
points of S¥~! within spherical distance e<m of M. That is, the length of the
great circle connecting any yE‘r,’(M) to the nearest point z€M is at most ¢.
We construct 75(#) as follows: construct the normal disks to # lying in R¥ as
above, but of radius 2 sin £/ 2 rather than ¢. Let 75(#) be the intersection of
the sphere S¥-! with the union of these disks, subject to the same con-
straints as before. Some simple trigonometry shows that these disks inter-
sect the sphere in points at spherical distance at most ¢ from M. Note that ¢
must be less than m for an £-spherical neighborhood to exist, since there are
two geodesics of length m perpendicular to M connecting any z&€M to its
antipodal point.

Now we can state Weyl's theorem for the volume of ¢-spherical neighbor-

hoods. Let

2,7("\ +1)/72

o = R(m+D)/2) @2

denote the surface area of the unit sphere S™ in R™*! (i.e. the m-volume),

and

2nm/
Om = YR Wm-1/ M (8.3)
denote the volume of the unit ball in R™ [Santals].
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Theorem 6.1 (Weyl): Let # be a smooth n-dimensional manifold in S¥-!, and
73(M) an e-spherical neighborhood of M. Let m=N-1-n be the codimension
of M (as a subset of S¥~1). Then

vol(T3(M)) = wpm-y - o-?m ky(M) Jy(e)

(6.4)
where the k (M) are the integrals of certain differential forms over M, kqo(#)

is the volume of M, and
une mie-1 g
T(e) = s (1+r?)N/2 (8.5)
(&)= ) (mreD)
(if e =0 the denominator in J, (&) is 1).

First we will discuss the behavior of J,(t) as a function of e and &, and

then we will discuss the geometric meaning of the theorem.

It is possible to evaluate the integral defining J,(z) exactly, but since
later approximations render the higher order terms in ¢ useless, we only
consider its behavior for small £&. Thus, we need only examine the behavior of

the integrand for small r as well, for which it obviously equals

e+m -1
W= potm-l o O(petmel)
so that
tane
f (raﬂn—l + 0(1"""“)) dr
Jo(e) = 2

m-(m+2) - - - (m+e-2)

- tﬂll‘+m z
" m-(m+2) - (m+e)

+ O(tan®*™+*2 )

- z.#m
“m{m+2) - (m+e)
(the last equality follows since tan ¢ = e+ 0(e%)).

+ 0(8' 0-"2)




Combining this last estimate with Weyl's theorem yields:
vol(73()) = 2Lvol(M) ™ + O(e™*?) . (88)

= Qp vol(M) e™ + O(c™*2) |

What is the geometric meaning of this last expression? Take, for exam-
ple, N=3 and n=0; this corresponds to M being a set of k& distinct points on
the unit sphere & in R®. vol(t3(M)) is then just the area of k spherical caps
centered at the points of M and each of radius £&. For small g, this area is
approximately kme%, which is what (8.8) gives after plugging in
m=N-1-n=2, vol(M)=k, and 0, =n. Similarly, we may take N=3 and n=1
corresponding to a one-dimensional curve M of length !, say, on S&
vol(73(M)) is then just the area of a strip surrounding M of length I and
width 2&, which is clearly approximated by 2-1-¢. Plugging m=1, 1, =2, and
vol(M)=l into (B.8) yields the same expression. In these simple examples
Weyl's theorem tells us the intuitive fact that the volume of the spherical
neighborhood is approximately equal to the volume of an m-ball of radius ¢
(0, &™) times the volume of M; Weyl's theorem extends the intuition of

these small examples to higher dimensions.

There is also a version of Weyl's theorem for tubular neighborhoods
[Weyl, Griffiths]. It says that the volume of 7,(M) i a polynrmial in & of
degree at most N (where MCRY), and that the lowest order (dominating)
term in ¢ is Qy_o vOl(M) eV ™ as expected. We will not use this version of

Weyl's theorem.

Next we discuss Lelong’s theorem on the volume of a homogeneous pure
dimensional complex algebraic variety. First we need several definitions from

algebraic geometry. (See [Kendig] for more details). A variety V is the zero




set of a collection {p,(2;. . . . , 24 )}: of polynomials:
V={(z), ....23) | Pa(zy. ... . 2p)=0for all af .
V is called is called real or complex according to whether the 2; are real or
complex. Since V can in general have points of self intersection, it is gen-
erally not a manifold, since it is not homeomorphic to Euclidean space in the
neighborhood of an intersection point. However, points g with relatively
open neighborhoods U,CV that are analytic manifolds are dense in V
[Theorem 4.2.4, Kendig] so that the foliowing definition makes sense: the
dimension of Vat p, written dim,(V), is
dimp(V) = limsup dim(U,) .
gev,cV
Uy & manifold

We define in turn the dimension of V as the maximum over all p€V of
dimy, (V). V is called pure dimensional or purely n-dimensional if dimy(V)=n
for all peV. When we refer to the dimension of anything in this thesis, we will
always mean the real dimension, i.e. the the dimension as a real manifold or
variety, rather than the complez dimension often used for complex objects,
which is exactly half the real dimension. To emphasize that we are dealing

with a complex variety, we will write its real dimension as 2n.

We call V homogeneous if it is a cone; that is if (2,,...,2,)€V implies
(az,, . . . ,azy)EV for all scalars a (real scalars if V is a real varie! v, complex

if V is complex). In terms of the defining polynomials {p,} this means that if

Palz ... 2a) = Thyztl x - xad
then

2{4’):11 .

k=1
where d does not depend on j. d is called the order of p,, and written

order(p). We say order instead of degree because we use degree to for the




more general concept in the next paragraph.

We define the degree of a purely 2n-dimensional homogeneocus complex
variety V in CV as follows. Let L2V-2" be a 2N-2n dimensional linear mani-
fold (plane) in CV. Since dim{Z%¥ ) + dim(V) = dim(C¥) = 2N, we say that
L®N-2n and V are of complementary dimension. Generically, L2¥-2* and V
will intersect in a surface of codimension equal to the sum of their codimen-
sions, that is 2N¥. In other words, their intersection will be of dimension 0 (a
finite collection of points) for almost all planes L2N-%» 1t turns out that for
aimost all Z2¥ -, this collection will contain the same number of points, and
this common number is called the degree of V, and is written deg(V). (see
[theorem 4.8.2, Kendig]). Intuitively, deg(V) gives the number of “leaves” of

the variety V that a typical plane L2V-2" will intersect.

Now we can state Lelong's theorem [Lelong, Thie, Griffiths] (or more pre-

cisely just the special case we need):

Theorem 6.2 (Lelong): Let V be a purely 2n-dimensional homogeneous com-
plex variety in CV, where n>0. Let V{r] denote that part of V contained in
By(r) (the N-ball of radius 7 centered at the origin). Then the volume of
V{r] is given by
vol(VIr]) = Qg - deg(V) - v . (8.7)
This remarkable theorem says the following: the volume of
V[r] = VNBy(r) is identical to the volume of By(r) intersected with the
variety consisting simply of deg(V) planes of dimension 2n passing through
the origin. This theoremn makes the computation of the leading term in the
expression for volume in Weyl's theorem simple, given the ability to compute
deg(V). The preparation for proving the main result in the next section is

now complete.
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8.3 The Volume of a Spherical Neighborhood of a Complex Homogeneous
Variety

The main result of this chapter is the following theorem. After the proof,
which is quite easy given the preparation of the last section, we will discuss
it
Theorem 6.3: Let V be a complex purely 2n dimensional homogeneous
variety of degree deg(V) in CV, where n>0. Then the fraction of unit sphere

in C¥ within Euclidean distance ¢ of Vis

I::;’) deg(V) @™ + o (2?) , (6.8.a)
where 2m =2N ~-2n is the codimension of V.

Interpreting the fraction of area as a probability, we may restate this as

Prob(distg(M.V) s ¢) = [N71] deg(n) 6™ + o(e?m) . (8.8.b)
where M is uniformly distributed on the surface of the unit sphere.
Proof- The surface to which we would like to be able to apply Weyl's theorem
is V' = VNS, the intersection of V and the unit sphere in CV. From Fig-
ure 8.2 we see that a point z&S?¥-! is within Euclidean distance ¢ of V if and
only if it is within spherical distance arcsin e=¢ + O(¢®) of V. Thus, the
spherical neighborhood whose volume we would like to measure (and divide
by vol(S2¥-1) to get the fraction of S¥-1) is 1% an (V). Lelong's theorem
tels us wol(V[1]) in terms of deg(V); it will turn out that
vol{ V') = 2n - vol(V[1]). Thus, if Toven (V) existed, we could use equations

(6.1) through (8.4) to compute

et Qe XD oM O i aenin eymee)

= (op ' 2n - Qgp - deg(V) - £2™ / oy + O(e2™*2)
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= [¥=1] - deg(n) - e2 + O(cam+9) (6.9)
and be done. Unfortunately, T3 qn (V") does not exist for reasons we will now
discuss. Even so, we will show that the result of the above computation is

valid provided we replace 0(£?™*2) by o (e¢2®).

Since V is a variety, it will in general intersect itself and not be a mani-
fold. If we remove the set V, of these intersection points from V the
remainder Vo, =V -V, is a manifold [Griffiths]. Furthermore,
dim( Vpe) = dim(V), and V,, is a connected, open and dense subset of V, so we
lose nothing by considering ¥,, instead of V [Kendig]. Since any homogene-
ous set like V,, intersects the sphere S?¥~! transversally, the intersection
Vos'= Vg M S2V-1 is also a manifold of dimension one less than V,,. Unfor-
tunately, ¥, also will not generally possess spherical neighborhoods because
it can contain "pinched sections” as illustrated in Figure 8.1. However, if we
remove the open set of all points within Euclidean distance 7 of ¥, from V,,',
what remains will be a compact set V4 (n) which does have an ¢ neighborhood
for ¢ less than a threshold &(n) which may go to zero as 7n does. As 7
approaches zero, the volume of Vj,(n) approaches the volume of V,,, and the
ratio of the volume of all points within £ of ¥, — ¥,{n) to the volume of all
points within ¢ of ¥,,(n) goes to zero. Thus, the estimate in (8.9) remains

valid if we replace O{e®*™*2) by o (¢®™).

It remains to show that vol(V') = 2n-vol(V{1]). We show more generally
that if V is the union of d-dimensional cones, then vol{ V) = d-vol{¥{1]). This
follows from expressing vol(V{1]) as the integral in spherical coordinates of

the volumes of concentric spherical sections of V:

vol(V[1)) = _Z'p“‘ vol(V') dp
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=vol(V)/d .
This completes the proof. Q.E.D.

Our first remark concerns the likely size of the error term o(e?™).

Since we are adding volumes of the form
const - e2™ + O(g2m+2) |
it is clear that if the first term in (6.9) is an underestimate, it is still an
underestimate by at most 0(z*™*2). Thus o(z?™) represents an error
bounded above by 0(g®™*2). More troublesome is the possibility that the first
term of (6.9) is an overestimate. Consider the ¥V of Figure 8.3, which is the
union of parts of the plane curves y =0 and y=z® (V is clearly not a homo-
geneous complex variety, but it illustrates our point). If we add the areas of
the g-tubular neighborhoods of these two parts, the sum overestimates the
area we want to measure by the area of the shaded region, which is doubly
covered by the two e-neighborhoods. The area of this doubly covered region
is approximately
(2¢)V/ (Bn)

(e-z*™) dz = O(e! + /)y |
~(2g)V/ ()

The area we want is clearly dominated by a linear term in &, so we see that

the overestimate depends on 2n, the degree of V.

Our second remark concerns the probabilistic interpretation of (8.7.b).
Instead of choosing a random point M uniformly distributed on S, we
consider choosing a random point # according to the density p and ask
about the distribution Prob(distg(M/ || M|| g . V) < &), where || #|| g is the
Euclidean norm of M (Frobenius norm if # is a matrix) so that M/ || M|} g
must lie on S®¥-1, As long as the random variable M/ || || g is unformly dis-
tributed on S*-!, Prob(distg(M/ || M|/ g . V) <€) will still be given by the
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expression in {8.7.b). Thus, we may apply our result to any density p for ¥
which causes M/ || #|| g to be uniform on S2V-!. A large class of such densi-
ties p is simply characterized by the symmetry condition p(M) = f (|| M|} ).
i.e. that the density function p is really only a function of || || z. Two well
known such densities are

N || Mp<t

PM)={0  otherwise °
the uniform density on the interior of the unit ball, and

p(M) = (Bmy/N . g~HN/2
the normal density on C¥ (i.e. each component of ¥ is an independent Gaus-

sian random variable with mean 0 and variance 1).
8.4 Estimating deg(V) of a Complex Homogeneous Variety

Next we turn to the problem of computing deg(V). There are two tools
fromn algebra we will use. Both are standard results in algebraic geometry
and can be found in {Chap 4, Kendig].

Theorem 8.4: If the complex homogeneous variety V is deflned as the zero
set of the single homogeneous polynomial p, then codim(V)=2, and V is
called a hypersurface. If in addition p is the product of distinct irreducible
factors, then deg(V)=order(p).

Since several interesting varieties we encounter later are defined by a
single irreducible polynomial whose order we know, this theorem supplies all
data needed to compute the volumes of their spherical neighborhoods to first
order.

Qur second tool is a slightly nonstandard version of a well known

theorem:




Theorem 8.5 (Bézout): Let V be a complex homogeneous variety given as the
zero set of the finite collection of homogeneous polynomials {p;}¢=;.m. Then

we can bound deg(V) as follows:

1< deg(V) = ‘nl order(p;) . (6.10)

The standard version of this theorem says that if varieties V¥, each
defined by the single polynomial py, intersect transversally, that is, if
codim(fjl %) =§‘ codim(¥) |
then deg(V) actually equals the product in (8.10). It is no surprise that this
product provides an upper bound when the ¥, do not intersect transversally.
Unfortunately, it seems to give an atrocious upper bound on some occasions,

but it is simple to compute.
6.5 Real Varieties

To extend the resuilts of previous sections to real varieties, we need to
estimate the volume of a real variety. The difficulties in doing this estimate
are illustrated by the following example. Consider the variety V(a,b,c)
defined by the polynomial p=az? + by? + c2z% where neither @ nor b norc is
zero. If z, ¥y, and z were complex, theorem 8.4 would imply that V had codi-
mension 2 and degree 2, and so by Lelong's theorem vol{V{1]) would be
20, =n?, independent of a, b, and ¢ (as long as they are nonzero). For z, y.
and gz real, we have the following possibilities, among others: If a=b=1 and
¢ <0, then V is a circular cone with codimension 1 and area 2mVc/(c —1),
which approaches 0 when ¢ does, and approaches 2 as ¢ goes to —w. Ifa, b

and c all have the same sign, V degenerates to a single point at the origin.

Despite these problems, it turns out we can still derive an upper bound

on the volume of a real variety V given only its dimension and degree, where
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by degree we mean the largest finite number of intersection points of V and
almost all planes L of complementary dimension. This bound uses Crofton's
formula {Santals]. We can use this bound in turn to extend Theorem 8.3 to

homogeneous real varieties as follows:

Theorem 8.8: Let V be an n-dimensional homogeneous real variety of degree
deg(V) in RY, where n>0. Then the fraction of the unit sphere in R¥ within
Euclidean distance ¢ of ¥V is less than or equal to

r(hy 4

—N=n - deg(V) - e™ + o(e™) (8.11)
woto o Nomel) pomily oz,

where m =N -n is the codimension of V.

Since this theorem includes pure dimensional homogeneous complex
varieties as a special case, it provides an upper bound to the result in
theorem 8.3:

Corollary 8.7 Let V be a purely 2n-dimensional homogeneous complex

variety of degree deg(V) in CV, where n>0. Then the fraction of the unit

sphere in CV within Euclidean distance ¢ of ¥ is less than or equal to

2N
[2;; . Lﬁ‘f:}] - deg(V) - &2 4 o(e?™) = [%JnV] %— deg(V) £2™ + o(e?™) .
n

Proof: Convert the gamma functions in Theorem 8.8 to factorials.
Thus, this estimate is too big by the factor [%ﬁ] / [11!] for complex

bomogeneous varieties. We will see why this factor appears later from

Crofton's formula.

Proof of Theorem 6.68: Just as Lelong's theorem provides an estimate of
vol{ V{r]) = vol( Y\ By(r)) for a complex homogeneous variety V, Crofton's
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formula lets us estimate vol(V[r]) for real varieties. Given this estimate

(Lemma 8.8), the rest of the proof is identical to that of Theorem 8.3.

Actually, Lemma 8.8 applies to much more general objects than
varieties (note that the definition of deg(V) makes sense for V a union of
manifolds):

Lemma 6.8: Let V be a countable union of manifolds in R¥ of dimension n or
lower such that deg(V) is finite. Let V[r]=VN\By(r) be that part of V within
the ball of radius r. Then

vol(V[r]) < |— ‘Q, - deg(V) - ™ . (8.12)
P[N-;+1J .P[ngl

Since this theorem includes complex pure dimensional homogeneous
varieties as a special case, it provides an upper bound on the value of
vol{ V[r]) given by Lelong's theorem:

Corollary 8.9: Let V be 2n dimensional in CV, and otherwise as described in
Theorem 8.8. Then

]

(3n)
vol(V[r]) = fp—l—] - Qop - deg(V) - #2» | (6.13)
n

Proof: Convert the gamma functions in Theorem 8.8 to factorials.

Thus, this estimate is too large by the factor [ glv ] / [,If ] for complex
homogeneous pure dimensional varieties, which is the source of the overesti-
mate in Corollary 8.7. Nevertheless, when V=S"-! in R¥ (so deg(V)=2) and
r=1, the expression for vol( V]1]) given by Theorem 8.8 is exact, so we see we

have traded generality of the hypotheses (unions of manifolds instead of




homogeneous varieties) for tightness of the bound.

Proof of Lemma 86.8: The proof follows easily from several resuilts of integral
geometry, all of which can be found in [Santalé]. We assume without loss of
generality that V is a manifold; the general result follows by applying the fol-
lowing analysis to each constituent manifold of V and adding the bounds.

Crofton’s formula [ equation 14.70, Santal6] expresses the volume of an
n-manifold V in R¥ in terms of an integral:

.
IN-n

vol(V) = = = SR AV dL¥N (6.14)

tun+l N
The integral is over all N—n dimensional planes L¥ ™ where d/¥™ is the

kinematic density for N—n planes. This means that the measure of a set of
planes is invariant under the group of rigid motions in RV #UIL¥N™NV) is the
number of points in the intersection of L¥™ and V; by hypothesis this is a

nonnegative integer bounded above by deg(V) for almost all L¥~". Thus

X

vol(V) < deg(V) == - S oai (8.15)
iy ¥ Iy
Applying this to V[r] instead of V, and noting that L¥"® can intersect V{r]

only if it intersects By(r), we see that

I} e
vol(V) < deg(V) 5352 S dL¥N— | (8.18)
(mﬂ.ﬂu‘ I'”-‘m”(')”

The integral in the last equation is known as a "cross-sectional integral”,
(quermassintegral: [Chap 13.8, Santalé]) because it gives the measure of the
set of planes which slice By(r). From equations (14.1) and (13.48) of Santal6,
we find




aIN— = " i=msiN- . (8.17)
N n o
LT™RNBu(rIve {=0N-n-1

Substituting this in the last inequality yields

P ”N-ﬂ ”ﬂ oﬂ"l
vol(V) < deg(V) - r Thmoy (6.18)
which after sorne manipulation using equation 8.1 yields the bound of the

lemma. Q.E.D. of Lemma 8.8 and Theorem 8.8.

We turn now to estimating the dimension and degree of a homogeneous
real variety V3. We assume Vp is given as the locus of zeros of a set {p,] of
homogeneous polynomials in the real variables {z;]. We may assume without
loss of generality that each p, has real coefficients. By allowing the z; to be
complex, {p,} naturally determines a complex homogeneous variety Vg and
it is natural to ask about the relationship between the degree and dimension

of Vg and the degree and dimensiop »f Vp

Theorem 6.10: Let V¢ and Vg both be determined by {p,} as described above.
Then

dim( v = 2V (8.19)
and
deg(Vp) < deg(Vp) . (8.20)

Proof: The relationship between dimensions follows from the implicit function
theorem, which says that if a point p€Vg has a neighborhood U which is a
manifold of dimension 2n, then there is an ordering of the coordinates
2;, . ...2y such that near p Vg can be parameterized as

(1. ... . Znfri . - PNn)
where




# = ez .3)
By restricting the z; to be real (but still within the region of definition), we

see that V3 can have dimension at most n.

Conversely, such a local parameterization of a real manifold can define
a complex manifold locally of twice the dimension if the functions ¢; are
defined for complex arguments. In particular, a real plane L§ ™ extends to a
complex plane LEV-2n_ If LgN- V. contains at most deg(Vy) points, then
LE™ N Vac L& 2" N V¢ can also contain at most deg( V) points. Q.E.D.

All of the real and complex varieties we consider can be given as the the
locus of zeros of {p,] where each p, has real coefficients, so we can use this
theorem to extend our knowledge about the degree and dimension of com-
piex varieties (see section 8.4) to real varieties. Indeed, for all the varieties

we study, the dimension of Vg will be exactly half the dimension of Vo

L
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Chapter 7: Applications to Matrix Inversion, Eigenvalue Problems, and Poly-
nomial Zero Finding

7.1 Introduction

In the last chapter we proved two theorems about the fraction of the
unit sphere within distance ¢ of a homogenecus variety. In this chapter we
apply this result to three probiems of numerical analysis. In section 7.2 we
compute the fraction of n by n matrices within £ of a matrix of rank at most
r. When r=n~1 this result can be interpreted as the probability distribution
of the condition number of a random matrix. In section 7.3 we compute the
fraction of matrices within ¢ of a matrix with a given Jordan canonical form.
In the simplest case, when the Jordan form contains (at least) one double
eigenvalue, this result gives the probability distribution of the distance from
a random matrix to the nearest defective matrix. In section 7.4 we compute
the fraction of polynomials within £ of a polynomial with a given zero struc-
ture. For the zero structure containing (at least) one double zero, this result
gives the probability distribution of the distance from a random polynomial
to one with a double root. Section 7.5 contains the proofs of two algebraic

lemmas needed earlier.

7.2 The Distribution of the Distance from a Random Matrix to a Matrix of
Rank r

In this section we will apply the general results of the last chapter to the
varieties of n by n matrices containing those of rank at most r. ¥hen r=n -1
we are talking about the variety of singular matrices. We adopt the proba-
bilistic interpretation of the results of the last chapter and ask the following
question: if a matrix & is chosen at random so that M/ || H|| g is uniformly
d stributed on the unit sphere, what is the probability distribution of the dis-
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tance of M/ || M|| g to the set of matrices of rank r? Said another way, what
is the distribution of the relative distance from M to the matrices of rank »?
To describe our results, we let Vg denote the complex n by n matrices of
rank at most 7, and Vg denote the real matrices of rank at most r. When
r=n-1, so that Vg~! (Vg™!) is the set of singular matrices, we can state our

result as follows:
Theorem 7.1: Let M¢ be a complex n by n matrix chosen randomly as
described above. Then
Prob(distg(Mc /|| Mell 5 . V271) = n(n2-1) - £2 + o(2?) . (7.1)
If Mpis a random real matrix, then
2_
Prob(distg(Mg/ || Mallz. VB') < '-—'"7-12—1-2- g +o(e) . (7.2)

¥We can interpet this theorem in a fashion more common among numeri-

cal analysts. We define the condition number of a (real or complex) matrix as
(H) = Mllg- || M

As is well known [Eckart], || #7}|] 7! is the Euclidean distance distg from # to

the nearest singular matrix. The condition number is used by numerical

analysts to measure the difficulty of inverting a matrix, because it gives the

maximum relative perturbation that can be caused in M~ by a unit relative

perturbation in #. In this notation, Theorem 7.1 can be restated as

Corollary 7.2: If Mcis a random complex matrix, then

Prob(c¢'(Me) = K) =n(n?-1) - K%+ o(K°?) . (7.3)
¥ My is a random real matrix, then

Prob(c(Mg) > K) < L‘i'g—;ll K+ o(KY) . (7.4)

Since the condition number is commonly used as a measure of how

difficult a matrix is to invert accurately, Corollary 7.2 measures the likeli-
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hood of a random matrix being hard to invert.

Note that this theorem provides no information at all unless
n(n?-1) K21, ie. K2Vn({n®-1) in the complex case, and unless
K2n(n2-~1)/2 in the real case. For real 10 by 10 matrices, this requires X to
be at least 495, already rather large by the standards of some numerical
analysts. Until sharper versions of Theorem 6.3 and 6.6 are forthcoming,
applying these asymptotic formulas in practical circumstances must be done

carefully.
For matrices of rank r <n -1 our results are:

Theorem 7.3: If M¢is a random complex matrix, then

{
Prob(distg(Mc/ || Mcll 2 . V&) = [<:'_;1)z] - deg(Vg) e¥n " 4 o (e 7% (7.5)

where

l * ]'
1< deg(Ve) < (r+1)i741? | (7.8)
It Mgis a random real matrix, then

Prob(distg(Mg/ || Mpll g . V&) < .7)
r( 2L n( 2
i)z T (‘n-—;f*-l ) I Zm';r2+1 ) 1 zn-,-;,-z ) x

deg(WR) - e & o (et ™)

where 1 < deg(V}) < deg(Vg).

The important aspect of these formulas is not the constant coeflicient,
but the exponent of ¢, since this exponent describes the behavior of the pro-
bability as a function of ¢. We see that matrices of lower rank become less

common rather quickly the exponent 2(n—r)? (or (n—r)?) going up as the




square of the rank deficiency n—r.

We can use Theorems 7.1 and 7.3 to compute various conditional proba-
bilities. For example, one might ask about the probability of a random
matrix being within relative distance £ of a matrix of rank r given that it is
within ¢ of a matrix of rank 7+1. We compute this simply by dividing the dis-
tribution of the distance to ¥ by the distribution of the distance to V*! to
get (in the complex case) a constant times ¢4 ")-2. This quantity tells us
that surfaces of lower rank matrices become increasingly sparser within the
surface of matrices of rank one higher. For example, the density of singular
(rank n—1) matrices within all matrices behaves as £?, rank n—2 matrices

within rank n —1 matrices as £® and so on.

Proof of Theorem 7.1: The proof for V2~! will follow immediately from
Theorem 6.3 if we show that V&~! is a purely 2n?-2-dimensional complex
homogeneous variety of degree n. This in turn follows directly from Theorem
8.4 since V2! is the zero set of the single irreducible order n polynomial
det(M). Similarly, the resuilt for Vg will follow from Theorem 8.6 if we show
that V3 is an n?2~1 dimensional real variety of degree at most n. The degree
bound follows from Theorem 8.10 and the dimension from noting that
det(M)=0 is linear in each mY so that mY can easily be expressed as a

rational function in the other n?—-1 real variables. Q.E.D.

Proof of Theorem 7.3: As with the last proof, the resuits follow from Theorems
6.3 and 6.8 given the dimension and bounds on the degrees of Vg and ¥§. To
compute the dimension, we use Gaussian elimination to put the matrix in row
echelon form: if M has rank r, then its rows and columns can be permuted so
that the permuted ¥' can be factored as LU. L is lower triangular with ones
on the diagonal and nonzeroes below the diagonal only in columns 1 through
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r. and U is upper triangular with nonzeroes only in rows 1 through r. These
nonzero entries serve as local coordinates for V', and there are 2rn—r2 of
them, so that dim(Vg)=2rn—r2, and dim(Vg)=2dim(V}). since the nonzero
entries are all complex in that case. To compute deg(V:), we note that V¢ is

given by the collection §p,} of all determinants of order r+1 minors of M, of
e .
which there are [ r: 1] . The bound on deg(Vg) comes from Bézout's

Theorem, and the bound on deg(V}) from Theorem 8.10. Q.E.D.

7.3 The Distribution of the Distance from a Random Matrix to a Matrix with
a given Jordan Canonical Form

Let PJ denote the set of n by n matrices with Jordan canonical form
given by the multiindex J (PL denotes the set of complex matrices, and P§
the real matrices). § denotes the Jordan form with (generically) m distinct
eigenvalues A, (isk=m), such that A\, bhas b, Jordan blocks of sizes
st=sf> - - 2s} . We say generic because within P lie lower dimensional
surfaces where distinct eigenvalues A\ and A; become equal, or where the
number of Jordan blocks for a given eigenvalue increase. This is analogous to
the situation in the last section, where the variety of matrices of rank at
most r has the matrices of rank exactly r as a dense open subset whose
complement (matrices of rank less than r) form a lower dimensional sub-
variety. (These statements about P! requi'e proof; we do not even know yet

that P! is a variety. These facts will be proven below.)

In this section we answer the following question: if the matrix M is
chosen at random so that M/ || #|| g is uniformly distributed on the unit
sphere, what is the probability distribution of the relative distance from M to
P% The simplest case occurs when P is the variety of matrices with at least

one double eigenvalue; in this case our result is:
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Theorem 7.4: Let M¢ be a complex n by n matrix chosen randomly as
described above, and let P¢ denote the set of complex matrices with at least
one double eigenvalue. Then

Prob(distg(M¢/ || Mellz . Po) =n{n-1)%(n+1) - 2 +a(e?) . (7.8)
If Mz is a random real matrix, and Py the set of real matrices with at least

one double eigenvalue, then

Prob(distg(Mg 7 || M| £ . Pa) < "(""1;’—@@ e+ole) . (7.9)

For matrices of a general Jordan form J we need to know the degree and
dimension of P{ and Pj§. Given this data, the results will follow from
Theorerns 6.3 and 6.5 of the last chapter. We compute dim(P¥) explicitly
below. We outline a procedure for computing a deflning set of polynomials
{pd} for P3, thus proving that P is a variety and providing an upper bound on
deg(P%) by Bézout's theorem (Theorem 8.5). We will not display ‘pJ} or com-
pute this upper bound, however, because they are very messy and do not
illuminate the structure of P? nearly as much as its dimension, which we do

compute explicitly.

Theorem 7.5: Let J and P? be defined as above. Then the codimension of A

(and the exponent of ¢ in Theorems 8.3 and 8.5) is

codix;(Pé) zn-m+2 2 (i-1) - s*#  (7.10)
k=] i=2

where the sum from i=2 to b, is zero if b, =1. If all the b, =1, so that there is

codim(Pg) =

one Jordan block per eigenvalue, this simplifies to

codim(P§) = ﬂdl—'-na—l(f-é-)—= n-m . (7.8)

Thus, if there is only one Jordan block per eigenvalue, the codimension

depends only on the number of distinct eigenvalues (matrices with one Jor-

dan block per eigenvalue are called nonderogatory).
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Proof of Theorem 7.4: The proof for P¢ will follow immediately from Theorem
8.3 if we show that Pg is a pure 2n?-2-dimensional complex homogeneous
variety of degree n{n —1). This will follow in turn from Theorem 6.4 if we show
Pg is defined by a single irreducible homogeneous polynomial p of order
n(n—1). This polynomial is called the resultant of the characteristic polyno-
mial of the matrix M and its first derivative, whose properties we record in

the following lemma:

Lemma 7.72 Lét M be a matrix of n? indeterminates my. Let
p(Amy) = det(M—\-J) be its characteristic polynomial. Then

r(my) = res(p(Amy) . S—p(Amy) . N)

i.e. the resultant of p and its derivative is a polynomial in the my which is

1) zero if and only if ¥ has a multiple eigenvalue,
2) homogeneous of degree n(n-1), and
3) irreducible.

Proof: see Section 7.5.

The result for Py follows from Theorems 8.6 and 6.10. This completes
the proof of Theorem 7.4. Q.E.D. of Theorem 7.4.

Proof of Theorem 7.5: This theorem was originally proven in [Arnold] and
discovered independently by us. Since the proof is short and provides and
interesting application of Lie groups to numerical linear algebra, we sketch it

here.

Let M be a matrix with Jordan form J. Frobenius's theorem
[Gantmacher] characterizes all matrices which commute with M, and shows
in particular that they form a linear manifold of dimension

s = d P @iy o

bu] (=]
for real matrices, and 2 - £(J) for complex matrices. Now consider the Lie
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group GL(n,C) of nonsingular n by n complex matr{ces. which has dimension
2n® Let Zy, denote the centralizer of & in GL{n,C), that is, the set of all non-
singular matrices which commute with 4. We know dim(Zy) by the result
just stated. It is easy to see that Zy is a closed subgroup of GL{n.C), so that
the quotient space GL(n,C)/ Zy is a manifold of dimension 2 (n? ~ z(J))
[Sternberg]. This quotient space is naturally diffeomorphic to the set Sy of
matrices which are similar to M, since Z,MZ;! = Z,MZ;* if and only if Z,
and Z, are in the same coset of Zy. Now we claim SyxC™ (the Cartesian pro-
duct), which has dimension 2 (m + n® — z(J)), is locally diffeomorphic to
P{. The diffeomorphism simply takes the j-th component of the C™ factor
and adds it to the m-th distinct eigenvalue of Sy. Subtracting dim(SgxC™)
from 2n? yields the value of codim{P{) claimed in the theorem.

The same proof works in the real case, yielding something of exactly haif
the codimension of P§. We do need two additional facts: if two matrices over
a fleld F are similar over an extension fleld X of F, then they are similar over
F (because a matrix is similar to its rational canonical form over F), and two
complex conjugate eigenvalues of a real n by n matrix are determined by
two real parameters, so SyxC™ can be replaced by SyxR™ above. QED. of
Theorem 7.5.

It remains to show how to construct a set of polynomials ip,f.; which
determine PJ. The construction has two steps. First, we construct a set of
polynomials in the matrix entries m¥Y and the eigenvalues A\, whose projec-
tion onto the my coordinates is P). Second, we show how to eliminate the A
variables. This elimination requires a generalization of the fundamental

theorem on symunetric polynomials to symmetric varieties.
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A polynomial p(A,, . . . ,A,) is called symmatric if for all permutations o
of n objects we have
PoA - M) =20 - - Agtn)) =P LA
The fundamental theorem on symmetric polynomials [VanderWaerden] says
that p(A;, . .. .A,) is symmetric if and only if it can be expressed as a poly-
nomial in the elementary symmetric functions I; of the A:

21‘2&

sien

Le= Y NN

mi<jen

s 3 MNCN

i<i<kEn

n= 1 N
wizn
A variety V which is generated by {p,(A,. . .. . An )} is called symmetric if for
all permutations ¢ V is also generated by {p,.]. Geometrically, this means V
is invariant under the group generated by all reflections in planes N =)A;. Now

we cean state our generalization of the fundamental theorem on symmetric
polynomials to symmetric varieties:

Lemma 7.7: Let the variety V be generated by {pa(A;. ... .As)). Then Vis
symmetric if and only if V is generated by a set of polynomials
{gs(Z). . . . .Z4)} in the elementary symmetric functions of the A,.

Proof: See section 7.5.
For our construction of {pl} we also need to know that the union and

intersection of varieties are varieties. For if {p,} generates P and {g;} gen-

erates Q, then {p, . ;] generates PN Q, and {p( - g;} generates P Q.

Now we begin the construction. Let m, = 2 s denote the algebraic
{=]
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multiplicity of the k-th distinct eigenvalue. Now take the eigenvalues and

constrain them with the following polynomials:

A,=&.M=k.....kl=kml.

Amgt1 T Aoz Amie1 T Ampes s Amgel = Amgemyg -

J\‘g ot = A‘gm‘*z . A‘g"uﬂ = A‘g e . A‘én‘n e Azé:m‘ R
In other words, equate the first m, eigenvalues to A,, the next m; to Ammge1e
and so on. Next take the polynomials det(M —\; /)=0, where j takes k values
corresponding to distinct A;. This last set of equations guarantees that each
A; is an eigenvalue of M. The constraints on the sizes of the Jordan blocks
can be translated into constraints on the rank of powers of ¥ -A; - /, because
rank(M -)\; - /)*! ~ rank(M ~A\;-I)* equals the number of Jordan blocks of size
at least i, which we denote B{. Thus,
rank(M-A; 1)t = n-.z:l B .
Clearly, the s/ uniquely determine the B{, and vice-versa. Also, any collaps-
ing of A\s's or breaking up of Jordan blocks (which occur on subvarieties) can
only make rank{M ~A; )} drop. From Section 7.2 we know how to express the
condition that rank(M-M-J)' should be no more than some constant in
terms of determinants of minors. All these polynomials taken together, for
all m distinct eigenvalues A; and powers i, determine a variety in C**xC™
space whose projection onto the C** component is PY.
However, there are many other varieties whose projection is P%. If

Pa(As . my)} generates the variety of the last paragraph, and if ¢ is a per-
mutation of the first n integers, then




108

Ve 5 alhogr) » my)} = (PaolAs . my)3
also has the same projection. Consider the variety V= (J¥, and let
.

iq,(& . m“); be a finite set of polynomials generating V (we know how to
construct the g, from the p, and the rule for taking unions of varieties). It is
clear from the construction of V that the ideal generated by fg (), . my)i is
symmetric, that is {gs(Aex) . Mmy)} generates the same ideal (and variety V)
for any permutation g. By Lemma 7.7, we see that there is a set of polynomi-
als {r,} which also generate V but which are functions of my; and the elemen-
tary symmetric functions I; of the A;. But these I, are nothing but the
coeflicients of the characteristic polynomial in M, which are polynomials in
my. Thus, the 7, themselves are polynomials only in the my. These r, are
the desired polynomials which generate 2.

7.4 The Distribution of the Distance from a Random Polynomial to One With
a Given Zero Structure

Let ZX denote the set of n-th degree polynomials p(z) = 2 pi - 2 with
=1

zero structure given by the multiindex X (Z¥ denotes the complex matrices,
and ZF the real matrices). K denotes the zero structure with (generically) m
distinct zeroes A, (1sk<m), such that A, has muiltiplicity m,. We say generic
for the same reason as in the last section: within ZX lie lower dimensional

surfaces within which distinct roots coalesce. This will be proven below.

In this section we answer the question: if the n-th degree polynomial p
is chosen at random so that p / {|p|] g is "uniformly distributed" on the unit

sphere, what is the prabability distribution of the relative distance from M to

2® (lip|l # is the norm (2 ips1%)“2) The reason for the quotation marks
=0

around "“uniformly distributed” is our insistence on choosing an n-th degree
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polynornial at random, which means that we eliminate the hyperplane p, =0
from our sample space. This makes sense because if p, =0 we have a qualita-
tively different problem because we have a polynomial of different degree.
Smale [Smale] considers the nonhomogeneous problem (p, =1), but by main-

taining hormogeneity we can still the results of chapter 6.

The simplest case occurs when ZK is the variety of polynomials with at

least one multiple root; in this case our result is:

Theorem 7.8: let p¢ be a complex degree n polynomial chosen randomly as
described above, and let Z¢ denote the set of complex matrices with at least
one double zero. Then

Prob(distg(pe/ || pPellE . Z¢) = n(n?-n-1) - &2 + o(c?) . (7.11)
If pgis a random real polynomial, and Zg the set of real polynomials with at

least one double zero, then

Prob(dists(pe/ |lpall 5. 2 = 221D 4 o(e) . 0

For polynomials of general zero structure ZX we need to know the
degree and dimension of Z¥ and ZF so we can apply Theorems 6.3 and 8.5 of
the last chapter. We compute dim(Z%) explicitly below, but just as in the last
section we only outline a procedure for computing a deflning set of polynomi-

als {pX| for ZK

Theorem 7.9: Let K and ZX be defined as above. Then the codimension of ZX

(and the exponent of £ in Theorems 6.3 and 8.5) is

codim(ZF) = E&hnz—(-z&= n-m

so that the codimension depends only on the number of distinct eigenvalues.

This theorem is analogous to Theorem 7.5 of the last section for non-

derogatory matrices, which is no surprise since the rational canonical form
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of a nonderogatory matrix is determined uniquely by the characteristic poly-

nomial.

Proof of Theorem 7.9: As in the analogous Theorem 7.4, we use the resultant
r of the polynomial p and its first derivative, which is a hornogeneous polyno-
mial of degree n(n-1). Unfortunately. this polynomial does not have the
property of being zero if and only if p has a multiple root, because it is also
zero if p, =0, the set of points we eliminated from our sample space above. If
we divide 7 by p,,, we get a polynomial d called the discriminant of p, which
is homogeneous of degree n2-—n -1 and irreducible (a proof of irreducibility
follows from the proof of Lemma 7.7 below). d will be zero if and only if p is of
degree n and has a multiple zero or p, =p, .,=0, but this last part is a lower
dimensional subvariety of the forbidden part of our sample space, so does
not contribute to vol{(d). The resuit follows from applying Theorems 8.3, 6.4,
8.8 and 8.10 to d. Q.E.D. of Theorem 7.9.

Proof of Theorem 7.10: The m + 1 parameters \; (1<i<m) and p, form a local
coordinate system for the p, as is easily seen by equating powers of z in the

identity

o et =pu [T a-r)™ .

<=0 {=)
Thus, ZF has dimension 2(m +1) and codimension 2(n -m) as claimed. The
real case follows since complex zeroes occur in complex conjugate pairs, so

all dimensions and codimensions are cut in half. Q.E.D. of Theorem 7.10.

It remains to show how to construct a set of polynomials {p¥] defining
ZX The construction is analogous to the construction in the last section for
Pl. First we construct a set of polynomials in the coefficients p; and the
zeroes )\, which define a symmetric variety whose projection onto the first

components is ZX These polynomials simply equate different A and express
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the p; as the usual symmetric functions of the A;. Second, we eliminate the

Ay using Lemma 7.8 just as in the last section.
7.5 Proofs of Lemmas 7.7 and 7.8:

Lemma 7.7 Let M be a matrix of n? indeterminates my. Let

P(A\my;) = det(M ~A-I) be its characteristic polynomial. Then

r(my) = res(p(\my) . %-p()\.m\-,) Y
i.e. the resultant of p and its derivative is a polynomial in the my which is

1) zero if and only if ¥ has a multiple eigenvalue,
2) homogeneous of degree n(n—1), and
3) irreducible.

Proof: The resultant of the two polynomials p(A) = 2 P N € R[A] and
=0

g(A) = 2 g; A* € R[A] is denoted res(p.q.A) (or res(p.q) if A is clear from
{=0

context) and defined as the determinant

Po P co P
Po B ' Pm
Pao 4 T Pm
90 91 In
do q: e In
qo q: T n

where there are m copies of the rows with ¢ entries, and n copies of the
rows with p entries. res(p.g) is clearly a polynomial in the p; and g;. If
Pm #0#g,, then res(p,q)=0 if and only if p and g have a common zero [Van-
derWaerden). If we choose g(A)=p'(\) to be the derivative of p and p,, #0,
then res(p.p’) will be zero if and only if p has a multiple root [VanderWaer-
den). Applying this to p(A) = det(M —As) proves claim 1 above.
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This choice of p is clearly homogeneous of degree n in the A and my;, so
p' is homogeneous of degree n—1. By Theorem 6.2 in [Kendig], their resul-
tant is homogeneous of degree n(n —-1). This proves claim 2 above.

The proof of claim 3 takes two steps. First we show that if
r(A)=A" + :g: r; Al, then res(r.r') is irreducible. Second we show that this
implies the irreducibility of res(p.p').

To show d = res(r,r’) is irreducible, we use another representation of it

in terms of the zeros a; of 7: d = ][] (& — a;)? [VanderWaerden]. Write d as
i<y

the product d=d, - d,. Since the d; are functions of the r,, they are sym-
metric functions of the o. Since a;~ung is a factor of d, it must divide either
d, or dp, say d,. By symmetry, all the other factors a;—a; must divide d,, so

d, is a constant muitiple of d, and d is irreducible.

Now consider the companion matriz of r:

0 1 o - 0
0 0 1 - 0
0 0 o - 1

“Tn-1 “Ta-2 ~Ta-3 °~ ~To

7 is the characteristic polynomial of this matrix [Herstein]. Now if res(p.p’)
factored into p; - pg. this would induce a factorization of d=res(r,r')=d, ds.
By the result of the last paragraph, p, (say), which corresponds to d,, will be
a constant multiple of d so that p; cannot depend on any entry my, of the
last row of M, but only on entries my (,,of the superdiagonal. Now take M and
exchange rows i and n as well as columns i and n to obtain the similar
matrix M'. M' has the same characteristic polynomial as #, so we conclude
that pp camnot d-pend on entries from row i. Thus pp is constant and

res(p.p') is irreducible as desired. Q.E.D. of Lemma 7.7.
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Lemma 7.8: Let the variety V be generated by {pg(A,, ... .A.)}. Then Vis
symmetric if and only if V is generated by a set of polynomials
{gs(Zy. . . . .Zp)} in the elementary symmetric functions of the A;.

Proof: The if direction is trivial. If there is only one p, the symmetry condi-

tion implies p,(N\;) = pa(Aq()) for all permutations o, so the only if direction is

equivalent to the fundamental theorem on symmetric polynomials. If there

is more than one p, we argue as follows. We let p,, denote the polynomial

PalAes)): and V, denote the variety generated by {p,.}. By assumption V,=V

for all 0. Then the variety V, = M V, is generated by {pee . all a and o} which
L4

equals M V,, where V, is generated by {p,, . a fixed, all ¢{. If we can show
a

the variety V, is generated by a collection of polynomials over the I;, we will
be done. We claim this collection of polynomials is the set {E,(p,)} of all sym-
metric function of the p,, themselves. For all the I;(p,) can all be zero if and
only if all the p,, are zero, so they generate the same variety. Furthermore,
each I;(p,) is clearly a symmetric function of the A;, and so by the funda-
mental theorem on symmetric functions, is itself a function of the ;. Q.E.D.
of Lemma 7.8.
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Chapter 8: Probabilistic Estimates of dissg(o, , 0;)
8.1 Introduction

In this chapter we apply the probabilistic estimates of chapters 8 and 7
to measure the likelihood that the various bounds on dissg(s; , 0z . path) and

dissg(o, . 05 . Tegion) of chapter 5 are accurate.

In Section 8.2 we compute the probability that a randomly chosen
matrix is completely diagonalizable, where our decomposability criterion is
based on path clustering. We also compute upper bounds on the probability
of being able to decompose a random matrix into blocks with no more than r
eigenvalues per block, where r>1. In Section B.3 we estirnate the decomposi-
tion probabilities using a different decomposability criterion: ¢ is decompos-

able into { o if || P;]] < K for all i (P, is the projection belonging to o;). In
1

Section 8.4 we ask how much larger the upper bound on diss(a, . 02 . path) is
likely to be than the lower bound. We also consider how likely the jower
bound on dissg(c, , 0. region) is to be accurate when g, contains exactly
one eigenvalue. Finally, in Section 8.5, we make probabilistic comparisons of
sep and sep,, and compute the probability distribution of sep,. For ease of
presentation we consider only complex matrices in this charter; probabilis-
tic statements for real matrices are in all cases similar and follow from

analogous theorems for random real matrices in chapter 7.
8.2 The Probability of Being Able to Diagonalize a Matrix
We recall our path clustering criterion, introduced in chapter 1: we may

decompose the spectrum o of a matrix ¥ into | o, provided no perturbation
1

of Euclidean norm & or smaller can cause an eigenvalue in some g; to

coalesce with an eigenvalue from some other g;. In this section we ask the
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question: if the matrix M is chosen at random in the sense of chapters 6 and

7. what is the probability that & is decomposable into ( {A}? We may apply
<

the result of section 7.3 to answer this question:

Theorem B.1: Let M be a random complex matrix and £>0 a constant. Then
the probability that all matrices in the set M, of matrices within Euclidean

distance ¢ of M are completely diagonalizable is

1-nn-1%n+1) -2+ o(e?) .
Proof: A matrix M'c M, is not completely diagonalizable if and only if M is
within £ of a matrix with a double eigenvalue. Now apply Theorem 7.4. Q.E.D.

This approach does not extend to computing the probability of being

able to decompose ¢ of a random matrix # into | o; where each o contains
1

at most r eigenvalues (rather than just 1). In other words, when #>1 it :- .ot

true that o decomposes into | o, #(0,)s7. if and on'y if M is not within £ of
¢

a matrix with an 7 +1-tuple eigenvalue. This is the poiat of Wilkinson's exam-
ple
1
2n 1
M= an 1

4n
presented in chapter 1: when ¢ is on the order of n5, ¢(M#) cannot be decom-

posed at all even though M is not within n? of a matrix with a quadruple
eigenvalue.

It is true, however, that the spectrum of a matrix within ¢ of one with an

r+1-tuple eigenvalue is not decomposable ¢ = | o; with #{o;)sr for all i, so
t

we still have an upper bound on the probability of such a decomposition:
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Theorem B8.2: Let & be a random complex matrix and £>0 a constant. Then
the probability that g(M) is decomposable into o; of size at most r<n (sub-
ject to the constraint imposed by ¢ ) is at most

1=-f(n.7) e +0(c¥) ,
where f(n,r) depends only onn and r.
Proof: If an n by n matrix has an r +1-tuple eigenvalue it can have at most

n-r distinct eigenvalues. Now apply Theorem 7.5. Q.E.D.

Whether the exponent 2r (or r in the real case) in this last theorem is

best possibie is an open question.
8.3 The Probability of a Random Matrix having all Projections of Small Norm

In this section we also are interested in the probability of being able to
block diagonalize a random matrix, but now our decomposition criterion is

different: we may decompose the o of a matrix M into |y o; provided
‘

|| P;|| <K for all i, where P; is the projection corresponding to ;. We con-

sider the probability of completely diagonalizing M:

Theorem B8.3: Let ¥/ be a random complex matrix, with one dimensional pro-
jections P,. Then
Prob(|| F;|| < Kforalli)21 -2n(n-1)}(n+1) K2+ 0(X®) .
Proof: Since
Prob(}| P;]| < Kforalli) = 1 — Prob( some || || =2 K) .

it suffices to show that 2n(n-1)*(n+1)¢? + o0(z?) is an upper bound on Prob(
some || || ® K). But by Lemma 5.1, || A|| 2K implies that the relative dis-
tance from M to a matrix with a double eigenvalue is no more than

V27 (K%~1), and the result follows from Theorem 7.4. Q.E.D.
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We can combine this theorem with Theorém 3.3 to compute the approxi-
mate probability distribution of the condition number &(S) = || S|| - || 71
of either the best conditioned matrix .S which diagonalizes a random matrix
M: STIMS = diag(\;). or the nearly best conditioned S computed in chapter
3

Theorem B.4: Let M be a random complex matrix and let § be the nearly
best conditioned diagonalizing similarity (S~'MS = diag(\)) computed in
chapter 3. Then

Prob(x(S) < K) =1 -2n3(n-13(n+1) K2+ 0(K?) .
This inequality is also true if S is the best conditioned similarity.

Proof: By Theorem 3.3, x(S)<n - max | B!, so

Prob(e(S) < X) = Prob(max || A[| < ,—’f-) .
Now apply Theorem 8.3. Since x(S) is an upper bound for « of a best condi-

tioned Spprua. these bounds also hold for x(Sgerrue ). Q.E.D.

The probability of decomposing o of M into | o; where #(o;)sr and
1

|| Pi|] <K, is clearly at least this large, but how much larger we do not know.
8.4 How Close are the Upper and Lower Bounds on disszg(g, . 02)?

In this section we consider the upper and lower bounds on dissg(c, . 02)

!epx(A.B)
Pl +VITPIE~1

for general o, and also in the case where ¢, contains just one simple eigen-

V2 sep,\(A4.8) = dissg(o, . gg) = (5.2)

value. (The notation is from Chapter 5: we assume || ¥|| g=1, and

u=[‘§l )
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We see immediately from Theorem 8.4 that with probability approaching
1 as O(K~2) that the upper and lower bounds above will not differ by more
than a factor of X for all g,.

To ask about the distance between the bounds for a given g,, however, is
not a question that lends itself to a probabilistic interpretation, because
there is no realistic way to probabilistically model the human choice of one
o, or another. Qur approach still lets us measure the volume of the set of
matrices for which one bound is more ‘accurate than another, though; we

only must not attribute a probabilistic interpretation to it

We consider the special case where g, contains a single eigenvalue of
multiplicity one. In particular, we claim that for most matrices the lower
bound in 5.1 above is more accurate than the upper bound. This claim is

justified by considering the second examnple of section 4.4:

2 c, Cu

S

for which we showed the lower bound in 5.1 is accurate to within a small fac-
tor. For a general matrix, B will not be diagonal as in the example but by
Theorem 8.4 it will be diagonalizable by a similarity transformation whose
condition number exceeds K on a set of matrices whose volume goes to zero
as K goes to infinity. Thus, by Lemma 2.1, dissg(o, . g2) will not exceed its
lower bound by more than a factor of X where X is only large on a small set
of matrices: those where 5 has a Jordan block of size at least 2 with eigen-
value a. In particular, as long as ¥ is not close to having a triple eigenvalue
at a (such matrices having codimension 4 in the complex case by Theorem

7.5), then the lower bound will be nearly accurate.
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8.5 How much smaller than sep, can sep be?

We originally posed this question in Chapter 5, where we showed in Corol-
lary 5.2 that the difference between upper and lower bounds on dissg(o, , g3)

depended on how much smaller sep could be than sep,. By Theorem 5.2

e
2sep,>sep> %[EEZP_N,] .
The examnple in section 5.4
g 1 !
A=| 4| emda B=-4T
e

showed that sep can indeed be as small as sep? when n,>1. When n,>2 we

have yet to find an example wheré sep can shrink as fast as sep:‘. and
experience in constructing examples suggests that none exist. In this section
we show that it is unlikely that sep and sep, differ by much; indeed it is
uniikely that they differ much from their trivial upper bounds (see Lemmas
2.8 and 2.15)

sepsmuin IM(4) = 2;(B)] (8.1.a)

and

min |A\(4) - A;(8)]

seprs L . (8.1.b)

The experience in constructing examples mentioned above leads us to

conjecture:
There is a constant c,, depending only on dimension such that

sep = casep? ,
but we will not pursue a proof of this claim here, except to say that it is pos-

sible to prove such an inequality for matrices bounded away from defogatory
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ones.
To prove these claims, we need to introduce yet another nested family of

]
pejorative varieties. Consider the Euclidean space c atemg . where the first

n,? coordinates represent 4 and the other ng? coordinates represent B in

)
the obvious way. Thus, we may refer to a point in c™ engt by its coordinates

(A.B). We will need two norms on this space, the usual Euclidean one

H(4.Ble=VIIAlIE + 11 BI|E

and

1 {(4.8)]] = max (|| Allg.lIBl|g) -
Clearly

1(4.8)l| < | (4.B)|g<s V2 (A.B)] . (8.2)
As usual we are primarily interested in what happens on the unit sphere
t(A.B): || (A.B){| g = 1}. Theorem 5.2 is valid on (and inside) this set, and so
implies that sep and sep, must approach zero simultaneously. This motivates
investigating the set P = {(4.8): sep(A,B) = sep,(A.B) = 0}. Not surpris-
ingly, P is a homogeneous variety; in fact it is the zero set of the single
irreducible order n, - ng polynomial det(¥,p) = tdet(¥p ,). What is the
shortest distance from a given (A,B) to P? In analogy to the notation of
chapters 8 and 7, we denote the minimum distance distg((4,.8),P) if we use
the || - || 7 norm, and disty((4.B).P) if we use the || - || norm. It is immedi-
ate from the definition of sep,(A.B) that sep,(A.8) is precisely the distance
from (A,B) to P in the || - || norm; we record this fact as

Lemma 8.5:

sep\(4.B) = disty((4.8) . P)
This immediately suggests applying Theorems 8.3 and 8.4 to P to prove
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Theorem B.8: Let (A.B) be chosen at random so that (4.8)/ || (A.B)l| ¢ is

]
uniformly distributed on the unit sphere in C™ 5" Then

(ny2+np2-1)n,np - £2 + o(c?) < Prob(sep,(

A B
TAE: T =%

% 2(nl+ngl—~1)n ng - €2 + o (e?)

Proof: The proof is a by now routine application of Theorems 6.3 and 8.4,

combined with Lemma 8.8 and inequality (8.2). Q.E.D.

Note that it is possible to randomly choose a pair (4,8) not only so that
(A.B)/ || (A.B)|| g is uniformly distributed on the sphere as required by the
theorem but also so that 4 and B are statistically independent (e.g. let each
entry of 4 and B be an independent Gaussian random variable with mean 0
and variance 1). We do not know if this method of choosing A and B is a real-
istic model of the distributions induced by choosing the original T matrix at

random, but we will use this method for the rest of this chapter anyway.

We begin by showing that neither sep nor sep, are likely to be
significantly smaller than their trivial upper bounds in (8.2). From Lemma
2.8 we have

min | \(4) - \(B)]

‘(S‘) ‘ K(Sg)
where S, is a {(best conditioned) diagonalizing similarity for 4 and Sz simi-

m&n IAM(A) = A;(B)| = sep(A,B) =

larly diagonalizes B. Since in our model 4 and B are chosen independently,
we can use Theorem 8.4 to estimate the distribution of &(S,) - x(Sp). the
ratio of the upper to lower bounds in the last inequality. A little manipulation
shows that the probability of this ratio exceeding X is 0(X™!).

The ratio of the upper to lower bounds on sep, in Lemma 2.15
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min IA(4) = 3(8)| min [(4) = 3 (8)
2 = sepa(4.B) > 5= TSy RS

is

max (x(S4) . ©(Sg)) .
An application of Theorem 8.4 shows that this last quantity exceeds K with
probability 0(X-2).

The ratio of the upper bound on sep, to the lower bound on sep, a crude

upper bound on sep,/ sep, is

x(S4) - (Sp)
—
which from the above discussion exceeds X with probability O(X™1).

A more detailed way to bound sep,/sep is as follows: we identify a
variety V with the property that for pairs (4.8) sufficiently far from V,
sepr(A.B)/ sep(A.B) will be bounded above by a constant depending on the
distance from V. From previous discussion we know V has to lie within the set
P where sep=sep,=0. On the set P we know 4 and B have to have at least one
eigenvalue A in common. By lemmas 2.8 and 2.7 (for sep) and lemmas 2.13
and 2.14 (for sep,) we know it suffices to look at the parts of 4 and B with
common eigenvalue A. By lemma 2.12 we know that as long as A is a simple
eigenvalue of either 4 or B, then sep and sep, can not differ too much. Thus,
V must consist of those pairs (4,5) where A and B have a common eigen-
value A\, and where both 4 and B have A as a multiple eigenvalue. This is a
total of 3 independent constraints, meaning V has codimension 3 in the real
case and 8 in the complex. As long as the pair (4,B) does not fall into a small
neighborhood of this set ¥ of high codimension, sep,/ sep will not be too big.
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Chapter 9: Relevance of the Probabilistic Model to Finite Precision Calcula-

tions
9.1 Introduction

What relevance does the probabilistic model of the last three chapters
have to actual finite precision calculations? We will see that the model can
predict certain behaviors of algorithms designed to solve the problems of
chapter 7 (matrix inversion, eigendecompositions, polynomial zero finding).
The tool required to analyze these aigorithms is backwards error analysis;
using it one can show that unless the problem to be solved is too close to
some set P of ill-posed problems, a "backwards stable algorithm" will com-
pute an accurate answer. For example, engineers have a rule of thumb that
“to get an answer to a certain precision (say 3 decimal places) it suffices to
do the intermediate calculations to about twice that precision (8 decimal
places)” [Kahan2]. It will turn out that the model predicts this behavior by
the measuring the relative rarity of matrices with triple eigenvalues (or poly-
nomials with triple zeros) compared to matrices with double eigenvalues (or

polynomials with double zeros).

The explanatory power of the model is limited by the underlying proba-
bility distribution of problems it assumes: M/ || M|| 5 should be uniformly
distributed, where ¥ is a random problem. Certain classes of problems sim-
ply do not generate this distribution. For example, we will see later that
using Rayleigh quotient iteration to compute eigenvectors of a symmetric
matrix requires solving a sequence of more and more nearly singular sys-
tems of linear equations. In fact, the more nearly singular the system, the
better the resulting answer. It is clearly nonsense to model the set of

matrices being inverted as coming from a uniform distribution. Other classes
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of problems with predilections for producing nearly singular matrices are
least squares problems (when solved using the normal equations) and finite
difference schemes for differential equations. The most significant limitation
of the model is that it uses a continuous distribution of probiems; all points
on the unit sphere are in a certain sense equally likely. In actual computa-
tions, however, the set of possible problems is discrete and finite. There are
only a (buge) finite number of finite precision numbers representable in a
computer, and hence only a finite number of finite precision matrices, poly-
nomials, etc. It will turn out that this discreteness leads to qualitatively
different behavior of algorithms than is predicted by the model. The continu-
ous model makes sense only so long as the finite precision numbers are
dense enough to resemble the continuum. In Figure 9.1, for example, the
volume of the set of points within distance 4e¢ of the curve P is a good
approximation to the number of dots (finite precision points) within distance
4¢ of P. This is true because the radius of the neighborhood of P (4¢) is large
compared to the spacing between finite precision points {¢). InFigure 9.2, on
the other hand, the volume of points within distance ¢/ 4 of P is not neces-
sarily a good approximation of the number of dots within £/4 of P. Thus,
when the radius of the neighborhood of P get smaller than the interdot dis-
tance ¢, the model breaks down. The breakdown of the model is critical if one
is trying to analyze the behavior of real algorithms running in finite precision
arithmetic. For example, we will see that one can measure the difficulty of
inverting a matrix with the condition number «'(M)=|| M|} » - || ~*{|. When
using an iterative algorithm to compute the inverse, the number of iterations
needed, if very large, is roughly proportional to «'(M) for many algorithms.
Thus, we could ask what {according to the model) is the average number of

jiterations needed to invert a random matrix? This is roughly proportional to
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the average condition number. In the case of real matrices, it will turn out
that the model predicts an infinite average condition number. In fact, the
model predicts that the average condition number of matrices whose condi-
tion numbers are restricted to be greater than X is infinite for any positive
K. This is because the integral expressing the average condition number

looks like

=

"?‘— (9.1)

which is infinite for all positive K. However, since there are only finitely many
finite precision matrices, the average condition number of those that are not
exactly singular must be finite. Thus, the model does not supply us any useful

information in this case.

What if we could compute the actual probability distribution of the
number of points within distance £ of the variety P of ill-posed problems for
the finite precision case? It would tell us how many single precision problems
we could solve as a function of the extra precision used in intermediate cal-
culations. For example, in the case of inverting real matrices, if the actual
probability distribution were roughly linear as in the continuous case, then
each bit of extra precision used would allow us to solve half the problems we
couldn't solve before. We present some simulations to substantiate this claim
below. Clearly, such information would be of great use in the design of
numerical algorithms or even computer arithmetic units, because it would
tell the designer how to trade off the cost of arithmetic (which is an increas-
ing function of the number of bits of precision) with the number of problems

the system can solve.

The rest of this chapter is organized as follows. Section 9.2 shows how
backwards error analysis makes the probability model relevant to finite
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precision calculations. Section 9.3 discusses the limitations of the model

mentioned above. Finally, section 9.4 demonstrates the usefulness of knowing

the discrete distribution of problems for analyzing the use of extra precision

arithmetic.

9.2 A Paradigm for Analyzing the Accuracy of Algorithms

The paradigm for applying the probabilistic model to the analysis of

algorithms is as follows:

(1)
(2

3

(4)

(1)

@

Within the space of problems, identify the set P of ill-posed ones.

Show that the closer a problem is to P, the more sensitive the solution

is to small changes in the problem.

Show that the algorithm in question computes an accurate solution for a
problem close to the one it received as input (this is known as "back-
wards stability” [Wilkinson1]). Combined with the result of (2), this will
show that the algorithm will compute an accurate solution to a problem

s0 long as the problem is far enough from P.

Compute the probability that a random problem is close to P. Using
this probability distribution in conjunction with the result of (3) we can
compute the probability of the algorithm computing an accurate resuit.
This paradigm is best explained by applying it to matrix inversion:

The set of matrices P which are ill-posed with respect to inversion are

precisely the singular matrices.

As discussed in section 7.2, the condition number

(M) = || M)l p- || M7 (8.2)
measures how difficult the matrix « is to invert. More precisely, it

measures how much a relative perturbation in # can be magnified in
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M~! [Kahan1]:

o MASHY = MY/ (LM
e (M) =l sup el s/ Mz

As also discussed in section 7.2, the condition number can be expressed

(9.3)

in terms of the distance from M to P:

(M) = || M| g s distg(H . P) (2.4)
as required by the paradigm.
Gaussian elimination with partial pivoting is a standard algorithm for
matrix inversion and is well known to be a backwards stable algorithm
[Wilkinson1). Backwards stability means that when applying Gaussian
elimination to compute the solution of the system of linear equations
Az =b, one gets an answer 2 which satisfies (4+54)2=b, where §4 is
small in norm compared to A. More exactly, let X; be the i-th column of
the approximation to M~! computed using Gaussian elimination, where
the arithmetic operations performed (addition, subtraction, multiplica-
tion, and division) are all rounded off to b bits of precision. Then X, is
the ezact value of the i-th column of the inverse of a matrix (M(i))™*
where M(i) is close to M (the subscript i means column ¢, and M(i) is
the i-th in a sequence of n by n matrices). In fact
NMGE) -Migsf(n) -2 || Mg (9.5)
where f(n) is a tunction only of n, the dimension of # [Wilkinson1].
This last expression can be used to bound the relative error in the solu-
tion X; [Wilkinsonl]:
NX ~ (M '%lig _ _w(M) f(n) 27

I (")l 2 1-c(N)- f(n) 27
In other words, as long as the bound on the distance from M(i) to ¥ is

(9.8)

not so large that M (i) could be singular, i.e. as long as
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distg(M . P)>f(n) -2 || Mllg2|| M(1) - Mllg (8.7)
or, substituting from equation (9.4)

(M) f(n)-2%<1, (9.8)
then the relative error in the computed inverse X is bounded. So, as
long the condition number «'(M) is smaller than 2°/ f (n), the solution
will have some accuracy, and the smaller £'(M), the more accurate the

solution.

(4) Now we can apply Corollary 7.2 which gives the probability distribution
of the condition number to estimate the probability that a random

matrix can be inverted accurately:

Prob( I

X - le (M) f(n) -2
s =0T e s v =0 @9

which, after some rearrangement (and assutning £<1 of course) equals

- ! L 3
= Prob{x'(M) < T (e 2’

=1-n(n®~1)- f(n)- (1:8 2.2°% 4 o(f(n)?- (l?_)z. 2-2°)
(assuming & is complex and applying Corollary 7.2). This last inequality

only makes sense for

fin)- L. 2
small, that is if the precision 2% used in the computation is much
smaller than the precision ¢ demanded of the answer. This restriction

also makes sense numerically.

Similar analyses are possible of standard algorithms to compute eigen-
values and eigenvectors as well as zeros of polynomials [Wilkinson1, Wilkin-
son2). In the case of eigenvalue probiems, the ill-posed set P consists of
those matrices with multiple eigenvalues, the higher the multiplicity the

more ill-posed the problem. Why is this? It is well known that the eigenvalues
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of a matrix are algebraic functions of the entries. In particular, if A is a sim-
ple eigenvalue of the matrix A, and if B is another matrix, then the
parameterized matrix 4+¢B will have an eigenvalue A(z) such that A(0)=A
and for £ in a neighborhood of 0, A(z) will be expressibie as a power series in
¢ [Kato2]. Interpreting ¢B as a perturbation in 4 due to measurement or
roundof! error, we see that the perturbation A(z)—A in A's eigenvalue A
depends at worst linearly on ¢ for small ¢. Now what if A is an m-tuple eigen-
value of A? Then it is well known [Wilkinson2] that A(s) will generically be
expressible as a power series in £!/™ for small ¢, so that a perturbation ¢B of
order ¢ in A results in a perturbation A(g)—A of order £/™ in A's eigenvalue.
Since for small ¢ and m>1, £“™ is much larger than £, this means that
errors made in the computation of multiple or nearly multiple eigenvalues
are large compared to the errors in a simple eigenvalue, and the higher the

multiplicity of the eigenvalue, the worse the error.

We can relate the error made to the multiplicity of the eigenvalue being
computed in a more precise way. Almost all algorithms used to compute
eigenvalues are backwards stable in the sense that they compute the eigen-
values of a matrix near the one supplied as input. As is the case of matrix
inversion, the distance from the input matrix to the nearby one depends cn
the precision 27 used in the calculations. Thus, the £¢8 perturbation of the
last paragraph is of order 2%, Therefore, the error in the computed value of
an m-tuple eigenvalue will be of order 2®/™ by the argument of the last
paragraph. In other words, if we do our calculations using b bits of precision,
we can only expect about b/ m bits of precision in the computed value of an
m-tuple eigenvalue. If m =2, for example (a double eigenvalue), we expect to
lose half our preéision. This analysis tells us iow much precision is needed to

compute eigenvalues accurately to the basic precision 2. Since we lose half
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the precision when computing double eigenvalues, double precision 272 will
get double eigenvalues accurate to single precision. Similarly, m-tuple preci-

sion 2™™ is need to expect to compute m-tuple eigenvalues accurately.

How likely are multiple eigenvalues according to our probabilistic
model? According to theorem 7.5, the codimension of the set of complex n
by n matrices with at least one m-tuple eigenvalue is 2(m—1), and so by
Theorem 6.3 the distribution of matrices within distance ¢ of one with an m-
tuple eigenvalue is asymptotically proportional to z3™-1 As m grows, the
exponent of ¢ increases, and ¢X™-1) decreases. Said another way, for small
enough ¢, matrices with muiltiple (double or more) eigenvalues are very rare
in the set of all matrices, matrices with triple (or more) eigenvalues are very

rare in the set of matrices with multiple eigenvalues, and so on.

Recall now the engineer’s rule of thumb: "double precision in intermedi-
ate calculations is enough to get the answer to single precision." The model
can be used to explain this empirical observation. Most eigenvalue problems
involve simple eigenvalues, and for these single precision suffices to compute
a satisfactory answer. Rarely, one bas to compute a nearly double eigen-
value, and for these double precision suffices. Much more rarely, one needs
yet higher precision, but the occurrence of these triple and higher multiple
zeros is so rare that double precision is almost always enough. A similar

analysis applies to computing multiple zeros of polynomials.

The discussion of the last few paragraphs has been far from rigorous,
using asymptotic results of dubious validity to explain an empirical observa-
tion stated without evidence. Nonetheless, it demonstrates the power of the
paradigm stated at the beginning of this section. In the next section we dis-

cuss when the results of the model are indeed inapplicable and misleading.
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We may use the same kind of paradigm as discussed so far to analyze
the speed of convergence of an algorithm rather than its accuracy. In this

case the paradigm is
(1) Identify the ill-posed problems P'.

(2') Show that the closer a problem is to P’, the slower the algorithm con-

verges.

(3') Compute the probability that a random problem is close to P'. Com-
bined with (2') this yields the probability distribution of the speed of

convergernce.

This approach has been used by Smale [Smale] in his average speed
analysis of Newton's method for finding zeros of polynomials.

9.3 Limitations of the Probabilistic Model

In this section we discuss two examples ilfustrating the breakdown of the
model. Both examples show behavior of widely used algorithms which
disagrees with the predictions of the model because of the effects of finite
precision arithmetic. In addition, the first example shows how the assump-

tion of uniformity of X/ || #{| g breaks down even in exact arithmetic.

The first example is Rayleigh quotient iteration, which is used to com-
pute the eigenvalues and eigenvectors of 2 symmetric matrix 4. If z; is an

initial guess at an eigenvector, the algorithm proceeds as follows:

N =zla /7 2z

T =(A-N)"z, .
The idea is that if z, is a good approximation to an eigenvector, then X\,, (the

Rayleigh quotient) is a good approximation to an eigenvalue, and in turn z,,,
is an even better approximate eigenvector. In fact, the asymptotic conver-

gence rate is cubic under some weak assumptions on the distribution of 4's
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eigenvalues (i.e. |Appup—X\,,| is of the order of |Apgyp~A\]? when
|Areug =X | is small enough [Parlett]). Note that as A; converges to an eigen-
value, the more nearly singular the matrix A-); becomes. In exact arith-

metic, of course, if z; is an exact eigenvector, 4-A; will be exactly singular.

The sequence of matrices to be inverted (actually, one solves the linear
systems (4-A)z;, =z; directly rather than compute (A-N)~!) becomes
more and more nearly singular, so that the distribution of matrices to be
(conceptually) inverted is far from uniformly distributed. This invalidates the
assumption of the model, even in exact arithmetic. How does Rayleigh quo-
tient iteration behave in finite precision arithmetic? The discussion of sec-
tion 9.1 might lead us to doubt that it works at all, since we showed there
that one can not expect an accurate solution to a nearly singular system of
linear equations. In fact, Rayleigh quotient iteration works extremely well
because the rounding errors committed in the course of computing z,,,
provably conspire to produce an error lying almost certainly in the direction
of the desired eigenvector. In fact, when A\; has almost converged to an
eigenvalue, the rounding errors will swamp the computation so that =z,
almost certainly becomes the desired eigenvector and further iterations
serve only to make small, random changes in z without improving its accu-
racy. In other words, there is an effect due to finite precision arithmetic
which makes the algorithm converge very quickly, so the asymptotically
cubic convergence rate is rarely observed for long. Therefore, any average
speed analysis of Rayleigh quotient iteration which ignores the effects of
finite precision arithmetic may be misleading. For a further discussion of

Rayleigh quotient iteration see [Parlett].
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For the second example we return to matrix inversion. As discussed in
section 9.1, the condition number is a measure of the anticipated accuracy
in the computed inverse of a matrix. It can also be used to measure the
speed of convergence of many iterative algorithms for computing the inverse
to within a given precision [Wilkinson2)]. Therefore, a reasonable question to
ask is the following: what is the expected condition number of a random real
matrix? Let us see what the model says. Even though we only have an asymp-
totic upper bound on the distribution of x'(M) of the form (Corollary 7.2):

Prob(c'(M)2K) < const - k™! + o(K™1)

it is clear that for large enough X the probability distribution function wiil
also be bounded below by a constant multiple of X~!. This is because within
the variety of singular matrices lies a manifold (perhaps small) of codimen-
sion 1 which does have an ¢ spherical neighborhood for sufficiently small ¢
(sufficiently large X} which by Weyl's theorem has a volume given asymptoti-
cally by a constant multiple of X~!. Thus, the integral which expresses the
expected condition number will be bounded below by

E(c(M)) = £ const - %

and this integral diverges to infinity no matter how large K, is. However,
since there are only a finite number of finite precision matrices, there is
some K, such that no finite precision matrix that is not exactly singular has
a condition number greater than K. Therefore the value of the integral is
determined entirely by integrating over a range of condition numbers which
do not correspond to any finite precision matrices. Clearly, this model is not

telling us anything useful in this case.

In the case of complex matrices, the corresponding integral does con-

verge, because for sufficiently large «' it is dominated by
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£ const - d;(-,‘ls- .
which converges. The resuits are however still not trustworthy because we
are integrating over the region within distance 27® of the variety P of singu-
lar matrices, where 2 is the separation between adjacent finite precision
numbers (see Figure 9.2), where the model breaks down. In the next section
we discuss what we could do if we could extend the model to this region close

to P.

0.4 How to Use the Discrete Distribution of Points Within Distance ¢ of a
Variety

Before proceeding, we need to say what probability measure we are
going to put on the discrete set of finite precision points. Section 9.3 showed
that no single distribution is good for all applications, but a uniform distribu-
tion remains a neutral and interesting choice. Therefore for the sake of dis-
cussion the probability we assign to the point M will be proportional to the
volume of the small parallelepiped of points which round to ¥ (i.e. the paral-
lelepiped centered at M with sides equal in length to the distance between
adjacent finite precision points). In the case of fixed point arithmetic [Wil-
kinson1], this means that each point has equal probability, whereas with
floating point arithmetic points near O have smaller probability than larger
points, since points near O are closer together than points farther away.
(Actually, the question of the distribution of the digits of a floating point
number has a large literature [Hamming, Bareiss]. The discussion in this sec-

tion does not depend on the actual distribution of digits chosen).

We claim that knowing the probability distribution of the distance of a
random flnite precision problem to the set P of ill-posed problems will tell us

how many flnite precision problems we can solve as a function of the extra
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precision used in intermediate calculations. As mentioned before, program-
mers often resort to extra precision arithmetic to get more accurate solu-
tions to problems which are given only to single precision. This extra preci-
sion has a cost (speed) dependent on the number of digits carried, so pro-
grammers usually avoid extra precision unless persuaded otherwise by bad
experiences, an error analysis, or paranoia. Therefore an accurate estimate
of how many problems can be solved as a function of the extra precision used
would not only help programmers decide how much to use but possibly
influence designers when they decide how much precision to make available

in their computer systems.

How does knowledge of this probability distribution tell us how much
extra precision to use? The paradigm in section 9.2 tells us how. A backwards
stable algorithm using extra precision gets an accurate solution to a problem
in a small ball around the input problem. The radius of this ball depends on
the extra precision used. Therefore, we can expect to accurately solve prob-
lems lying within 2~* of P, where 2™ is the distance between adjacent finite
precision numbers in the input data, since the small ball around the input
problem willi be bounded away from the set P. The probability distribution
tells us as before how many problems lie within a given distance of P, and so

it tells us how many problerns we can solve that we couldn't solve before.

This discussion hss assumed so far that the finite precision input is
known exactly, i.e. that there is no error inherited from previous computa-
tions or from measurement errors. In general there will be such errors, and
they will aimost always be at least a few units in the last place of the input
problem. In other words, there already is a ball of uncertainty around the
input problem with a radius equal to a small multiple of the interpoint dis-
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tance 2. Therefore, it may make no sense to use higher precision to accu-
rately solve problems lying very close to P when the inherited input error is
so large that the true answer is inherently very uncertain. In such situations
programmers usually shrug and settle for the backwards stability provided
by the algorithm, even if the delivered solution is entirely wrong, because
the act of solution has scarcely worsened the uncertainty inherited from the
data, and the programmer declines to be heid responsible for the uncer-

tainty inherent in the data.

Nevertheless, we close with an example using the actual discrete distri-
bution. Consider the rather simple problem of inverting 2 by 2 matrices. This
problem is small enough that we can actually exhaustively compute the
desired discrete probability distribution for low precision arithmetic. We did
this for 3, 4, 5, 8 and 7 bit fixed point arithmetic (all numbers lay between 0
and 1 in absolute value), where each flxed point matrix was assigned the
same probability. In all cases, we observed approximately linear behavior of
the probability distribution (as predicted by the continuous model) both for
distances ¢ to the nearest singular matrix larger than 2~® (3<b<7), and for ¢
smaller than 2~ (the fraction of problems within 2 of a singular matrix was
about 2'~*). This linear behavior continued until ¢ reached approximately
2% and there the graph of the distribution became horizontal and
remained so all the way to the origin, intersecting the vertical axis at about
28-® meaning that all matrices closer to P than approximately 2% were
exactly singular, and that the fraction of matrices which were exactly singu-
lar was 22-%_ See Figure 9.3 for a rough sketch of this observed probability
distribution. What does this tell us about the use of extra precision? Basi-
cally, as long as the distribution function remains linear, it says that for

every extra bit of intermediate precision, we can solve haif the problems we
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couldn’t soive before. This regime continues until we reach double precision,
at which point the only problems we can’t solve are exactly singular. Indeed,
since

-1
a c a9 ~b
b d] T (ad —be) -c a

we can clearly compute the inverse accurately if we can compute the deter-

minant ed -bc accurately. Since a, b, ¢ and d are given to single precision,

double clearly suffices to compute ad —bc exactly.

Of course, exhaustive evaluation of the distribution function is not rea-
sonable for large problems, and evaluating the distribution function becomes

an interesting question of Diophantine approximation.
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Figure 9.1 A 4¢ neighborhood of the curve P

1

Figure 9.2 An €/4 neighborhood of the curve P
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